版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市2025届高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“结绳计数”是远古时期人类智慧的结晶,即人们通过在绳子上打结来记录数量.如图所示的是一位农民记录自己采摘果实的个数.在从右向左依次排列的不同绳子上打结,满四进一.根据图示可知,农民采摘的果实的个数是()A.493 B.383 C.183 D.1232.设集合,,若,则的取值范围是()A. B. C. D.3.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.34.在三棱锥中,,二面角的大小为,则三棱锥的外接球的表面积为()A. B. C. D.5.在等比数列中,,,,则等于()A. B. C. D.6.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.7.向量,则()A. B.C.与的夹角为60° D.与的夹角为30°8.将函数f(x)=sin(ωx+)(ω>0)的图象向左平移个单位,所得到的函数图象关于y轴对称,则函数f(x)的最小正周期不可能是()A. B. C. D.9.设有直线m、n和平面、.下列四个命题中,正确的是()A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥10.向量,,若,则实数的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数那么的值为.12.已知函数,则的取值范围是____13.函数的定义域为____________.14.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.15.若,,则___________.16.公比为的无穷等比数列满足:,,则实数的取值范围为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.18.若函数满足且,则称函数为“函数”.(1)试判断是否为“函数”,并说明理由;(2)函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;(3)在(2)的条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求.19.已知都是第二象限的角,求的值。20.已知是等差数列,设数列的前n项和为,且,,又,.(1)求和的通项公式;(2)令,求的前n项和.21.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计得频率分布直方图如图所示.(1)经计算估计这组数据的中位数;(2)现按分层抽样从质量为,的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:A:所有芒果以10元/千克收购;B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据题意将四进制数转化为十进制数即可.【详解】根据题干知满四进一,则表示四进制数,将四进制数转化为十进制数,得到故答案为:C.【点睛】本题以数学文化为载体,考查了进位制等基础知识,注意运用四进制转化为十进制数,考查运算能力,属于基础题.2、A【解析】因为,,且,即,所以.故选A.3、B【解析】
先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【点睛】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.4、D【解析】
取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选D【点睛】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题5、C【解析】
直接利用等比数列公式计算得到答案.【详解】故选:C【点睛】本题考查了等比数列的计算,属于简单题.6、D【解析】
利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【点睛】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.7、B【解析】试题分析:由,可得,所以,故选B.考点:向量的运算.8、D【解析】
利用函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,求得函数的最小正周期为,由此得出结论.【详解】解:将函数的图象向左平移个单位,可得的图象,根据所得到的函数图象关于轴对称,可得,即,.函数的最小正周期为,则函数的最小正周期不可能是,故选.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,属于基础题.9、D【解析】
当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A不正确,B选项再加上两条直线相交的条件,可以判断面与面平行,故B不正确,C选项再加上m垂直于两个平面的交线,得到线面垂直,故C不正确,D选项中由α⊥β,m⊥β,m,可得m∥α,故是正确命题,故选D10、C【解析】
利用向量平行的坐标表示,即可求出.【详解】向量,,,即解得.故选.【点睛】本题主要考查向量平行的坐标表示.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.12、【解析】
分类讨论,去掉绝对值,利用函数的单调性,求得函数各段上的取值,进而得到函数的取值范围,得到答案.【详解】由题意,当时,函数,此时函数为单调递减函数,所以最大值为,此时函数的取值当时,函数,此时函数为单调递减函数,所以最大值为,最小值,所以函数的取值为当时,函数,此时函数为单调递增函数,所以最大值为,此时函数的取值,综上可知,函数的取值范围是.【点睛】本题主要考查了分段函数的值域问题,其中解答中合理分类讨论去掉绝对值,利用函数的单调性求得各段上的值域是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】
先将和分别解出来,然后求交集即可【详解】要使,则有且由得由得因为所以原函数的定义域为故答案为:【点睛】解三角不等式的方法:1.在单位圆中利用三角函数线,2.利用三角函数的图像14、1【解析】
利用线面平行的性质定理来进行解答.【详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【点睛】本题考查线面平行的性质定理,是基础题.15、【解析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.16、【解析】
依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因为,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0(2)【解析】
(1)通过可以算出,移项、两边平方即可算出结果.(2)通过向量的运算,解出,再通过最大值根的分布,求出的值.【详解】(1)通过可以算出,即故答案为0.(2),设,,,即的最大值为;①当时,(满足条件);②当时,(舍);③当时,(舍)故答案为【点睛】当式子中同时出现时,常常可以利用换元法,把用进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.18、(1)不是“M函数”;(2),;(3).【解析】
由不满足,得不是“M函数”,可得函数的周期,,当时,当时,在上的单调递增区间:,由可得函数在上的图象,根据图象可得:当或1时,为常数有2个解,其和为当时,为常数有3个解,其和为.当时,为常数有4个解,其和为即可得当时,记关于x的方程为常数所有解的和为,【详解】不是“M函数”.,,不是“M函数”.函数满足,函数的周期,,当时,当时,,在上的单调递增区间:,;由可得函数在上的图象为:当或1时,为常数有2个解,其和为.当时,为常数有3个解,其和为.当时,为常数有4个解,其和为当时,记关于x的方程为常数所有解的和为,则.【点睛】本题考查了三角函数的图象、性质,考查了三角恒等变形,及三角函数型方程问题,属于难题.19、;【解析】
根据所处象限可确定的符号,利用同角三角函数关系可求得的值;代入两角和差正弦和余弦公式可求得结果.【详解】都是第二象限的角,,【点睛】本题考查利用两角和差正弦和余弦公式求值的问题;关键是能够根据角所处的范围和同角三角函数关系求得三角函数值.20、(1),(2)【解析】
(1)运用数列的递推式,以及等比数列的通项公式可得,是等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【详解】(1)当时,;当时,,且相减可得:故:是公差为d的等差数列,,即为:.(2),前n项和:两式相减可得:化简可得:【点睛】本题考查了数列综合问题,考查了等差等比数列的通项公式,项和转化,乘公比错位相减等知识点,属于较难题.21、(1)中位数为268.75;(2);(3)选B方案【解析】
(1)根据中位数左右两边的频率均为0.5求解即可.(2)利用枚举法求出所以可能的情况,再利用古典概型方法求解概率即可.(3)分别计算两种方案的获利再比较大小即可.【详解】(1)由频率分布直方图可得,前3组的频率和为,前4组的频率和为,所以中位数在内,设中位数为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业工程中介服务协议模板汇编版B版
- 2024劳务安全生产协议书
- 2024城市公共厕所翻新工程协议样本版
- 房屋土地买卖合同2024年度重庆市渝中区2篇
- 江南大学《工程材料基础》2021-2022学年第一学期期末试卷
- 佳木斯大学《油画静物》2021-2022学年第一学期期末试卷
- 2024年专业交通违规车辆紧急拖移服务合同版
- 全新智慧城市整体解决方案合同(2024版)2篇
- 2024年外墙保温一体化板材施工合作合同版B版
- 暨南大学《涉外经济法》2021-2022学年第一学期期末试卷
- 公司安全事故隐患内部举报、报告奖励制度
- 2024年江苏省苏州市中考语文试卷
- 2024-2030年中国色氨酸行业发展态势及投资价值评估报告
- 中小学校保安服务方案(技术方案)
- 小标题式作文公开课获奖课件省赛课一等奖课件
- 24秋国家开放大学《公共关系学》实训任务(5)答案
- 海南省海口市海南省华侨中学2024-2025年八年级上期中考试物理试题(含答案)
- 2.2.3 氯气的实验室制法 课件 高一上学期化学人教版(2019)必修第一册
- 苏教版(2024新版)七年级上册生物期末模拟试卷 3套(含答案)
- 赛力斯招聘在线测评题
- 冬季传染病预防-(课件)-小学主题班会课件
评论
0/150
提交评论