北京八中2025届高一数学第二学期期末达标检测模拟试题含解析_第1页
北京八中2025届高一数学第二学期期末达标检测模拟试题含解析_第2页
北京八中2025届高一数学第二学期期末达标检测模拟试题含解析_第3页
北京八中2025届高一数学第二学期期末达标检测模拟试题含解析_第4页
北京八中2025届高一数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京八中2025届高一数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在长方体中,,,,则异面直线与所成角的大小为()A. B. C. D.或2.已知,且,把底数相同的指数函数与对数函数图象的公共点称为(或)的“亮点”.当时,在下列四点,,,中,能成为的“亮点”有()A.0个 B.1个 C.2个 D.3个3.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为()A. B. C. D.4.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.85.若满足条件的三角形ABC有两个,那么a的取值范围是()A. B. C. D.6.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.287.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”8.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④9.已知满足:,则目标函数的最大值为()A.6 B.8 C.16 D.410.已知函数,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.12.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)13.设函数的部分图象如图所示,则的表达式______.14.若,则_______.15.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.16.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合.(Ⅰ)求;(Ⅱ)若集合,写出集合的所有子集.18.已知函数(1)解不等式;(2)若对一切,不等式恒成立,求实数的取值范围.19.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.20.已知,,且.(1)求函数的最小正周期;(2)若用和分别表示函数W的最大值和最小值.当时,求的值.21.已知向量,,且(1)求·及;(2)若,求的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【点睛】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.2、C【解析】

利用“亮点”的定义对每一个点逐一分析得解.【详解】由题得,,由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”.故选C【点睛】本题主要考查指数和对数的运算,考查指数和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.3、B【解析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.4、A【解析】

由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【点睛】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5、C【解析】

利用正弦定理,用a表示出sinA,结合C的取值范围,可知;根据存在两个三角形的条件,即可求得a的取值范围。【详解】根据正弦定理可知,代入可求得因为,所以若满足有两个三角形ABC则所以所以选C【点睛】本题考查了正弦定理在解三角形中的简单应用,判断三角形的个数情况,属于基础题。6、C【解析】

根据等差数列的求和与通项性质求解即可.【详解】等差数列前n项的和为,故.故.故选:C【点睛】本题主要考查了等差数列通项与求和的性质运用,属于基础题.7、A【解析】

根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;

故选A.【点睛】本题考查了互斥事件的定义.是基础题.8、B【解析】

利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.9、D【解析】

作出不等式组对应的平面区域,数形结合,利用z的几何意义,即得。【详解】由题得,不等式组对应的平面区域如图,中z表示函数在y轴的截距,由图易得,当函数经过点A时z取到最大值,A点坐标为,因此目标函数的最大值为4.故选:D【点睛】本题考查线性规划,是基础题。10、D【解析】

令,根据奇偶性定义可判断出为奇函数,从而可求得,进而求得结果.【详解】令为奇函数又即本题正确选项:【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

首先求出圆锥体的体积,然后与近似公式对比,即可求出公式中取的近似值.【详解】由题知圆锥体的体积,因为圆锥的底面周长为,所以圆锥的底面面积,所以圆锥体的体积,根据题意与近似公式对比发现,公式中取的近似值为.故答案为:.【点睛】本题考查了圆锥体的体积公式,属于基础题.12、①②【解析】

根据均值不等式依次判断每个选项的正误,得到答案.【详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【点睛】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.13、【解析】

根据图象的最高点得到,由图象得到,故得,然后通过代入最高点的坐标或运用“五点法”得到,进而可得函数的解析式.【详解】由图象可得,∴,∴,∴.又点在函数的图象上,∴,∴,∴.又,∴.∴.故答案为.【点睛】已知图象确定函数解析式的方法(1)由图象直接得到,即最高点的纵坐标.(2)由图象得到函数的周期,进而得到的值.(3)的确定方法有两种.①运用代点法求解,通过把图象的最高点或最低点的坐标代入函数的解析式求出的值;②运用“五点法”求解,即由函数最开始与轴的交点(最靠近原点)的横坐标为(即令,)确定.14、【解析】

对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.15、【解析】

根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.16、1【解析】

运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ).【解析】

(Ⅰ)求解二次不等式从而求得集合A,利用指数函数的图像求出集合B,再进行并集运算即可;(Ⅱ)依次求出,,即可写出集合C的子集.【详解】(Ⅰ)由,得,即有,于是.作出函数的图象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【点睛】本题考查集合的基本运算,集合的子集,属于基础题.18、(1);(2)【解析】

(1)根据一元二次不等式的求解方法直接求解即可;(2)将问题转化为恒成立的问题,通过基本不等式求得的最小值,则.【详解】(1)或所求不等式解集为:(2)当时,可化为:又(当且仅当,即时取等号)即的取值范围为:【点睛】本题考查一元二次不等式的求解、恒成立问题的求解问题.解决恒成立问题的关键是通过分离变量的方式,将问题转化为所求参数与函数最值之间的比较问题.19、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)由茎叶图中的数据计算、,进而可得平均分的估计值;(Ⅱ)求出基本事件数,计算所求的概率值;(Ⅲ)答案不唯一.从平均数与方差考虑,派甲参赛比较合适;从成绩优秀情况分析,派乙参赛比较合适.【详解】(Ⅰ)由茎叶图中的数据,计算,,由样本估计总体得,甲、乙两名同学在培训期间所有测试成绩的平均分分别均约为分.(Ⅱ)从甲、乙两名同学高于分的成绩中各选一个成绩,基本事件是,甲、乙两名同学成绩都在分以上的基本事件为,故所求的概率为.(Ⅲ)答案不唯一.派甲参赛比较合适,理由如下:由(Ⅰ)知,,,,因为,,所有甲的成绩较稳定,派甲参赛比较合适;派乙参赛比较合适,理由如下:从统计的角度看,甲获得分以上(含分)的频率为,乙获得分以上(含分)的频率为,因为,所有派乙参赛比较合适.【点睛】本题考查了利用茎叶图计算平均数与方差的应用问题,属于基础题.20、(1);(2).【解析】

(1)根据向量数量积的计算公式和三角恒等变换公式可将化简为,进而求得函数的最小正周期;(2)由可求得的范围,进而可求得的最大值和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论