版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省白城市通榆县第一中学数学高一下期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法错误的是()A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2B.身高和体重具有相关关系C.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6名D.两个变量间的线性相关性越强,则相关系数的值越大2.已知数列满足,为其前项和,则不等式的的最大值为()A.7 B.8 C.9 D.103.已知,表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知圆C的半径为2,在圆内随机取一点P,并以P为中点作弦AB,则弦长的概率为A. B. C. D.5.函数y=tan(–2x)的定义域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}6.某学校为了解1000名新生的身体素质,将这些学生编号1,2,……,1000,从这些新生中用系统抽样方法等距抽取50名学生进行体质测验.若66号学生被抽到,则下面4名学生中被抽到的是()A.16 B.226 C.616 D.8567.在中,,BC边上的高等于,则()A. B. C. D.8.下列函数中,既是偶函数又在区间上单调递减的是(
)A. B. C. D.9.函数y=sin2x的图象可能是A. B.C. D.10.在中,边,,分别是角,,的对边,且满足,若,则的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为_____.12.若数列满足,,则的最小值为__________________.13.在等差数列中,公差不为零,且、、恰好为某等比数列的前三项,那么该等比数列公比的值等于____________.14.三棱锥的各顶点都在球的球面上,,平面,,,球的表面积为,则的表面积为_______.15.已知圆锥如图所示,底面半径为,母线长为,则此圆锥的外接球的表面积为___.16.的内角的对边分别为.若,则的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.18.已知函数.(1)证明函数在定义域上单调递增;(2)求函数的值域;(3)令,讨论函数零点的个数.19.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.20.如图,是正方形,是该正方形的中心,是平面外一点,底面,是的中点.求证:(1)平面;(2)平面平面.21.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用平均数和方差的定义,根据线性回归的有关知识和分层抽样原理,即可判断出答案.【详解】对于A:若样本的平均数为5,标准差为1,则样本的平均数2×5+1=11,标准差为2×1=2,故正确对于B:身高和体重具有相关关系,故正确对于C:高三学生占总人数的比例为:所以抽取20名学生中高三学生有名,故正确对于D:两个变量间的线性相关性越强,应是相关系数的绝对值越大,故错误故选:D【点睛】本题考查了线性回归的有关知识,以及平均数和方差、分层抽样原理的应用问题,是基础题.2、B【解析】
由题意,整理得出是一个首项为12,公比为的等比数列,从而求出,再求出其前项和,然后再求出的表达式,再代入数验证出的最大值即可.【详解】由可得,即,所以数列是等比数列,又,所以,故,解得,(),所以的最大值为8.选B.【点睛】本题考查数列的递推式以及数列求和的方法分组求和,属于数列中的综合题,考查了转化的思想,构造的意识,本题难度较大,思维能力要求高.3、A【解析】
根据线面垂直的判定与性质、线面平行的判定与性质依次判断各个选项可得结果.【详解】选项:由线面垂直的性质定理可知正确;选项:由线面垂直判定定理知,需垂直于内两条相交直线才能说明,错误;选项:若,则平行关系不成立,错误;选项:的位置关系可能是平行或异面,错误.故选:【点睛】本题考查空间中线面平行与垂直相关命题的辨析,关键是能够熟练掌握空间中直线与平面位置关系的判定与性质定理.4、B【解析】
先求出临界状态时点P的位置,若,则点P与点C的距离必须大于或等于临界状态时与点C的距离,再根据几何概型的概率计算公式求解.【详解】如图所示:当时,此时,若,则点P必须位于以点C为圆心,半径为1和半径为2的圆环内,所以弦长的概率为:.故选B.【点睛】本题主要考查几何概型与圆的垂径定理,此类题型首先要求出临界状态时的情况,再判断满足条件的区域.5、A【解析】
根据诱导公式化简解析式,由正切函数的定义域求出此函数的定义域.【详解】由题意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函数的定义域是{x|x≠+,k∈Z},故选:A.【点睛】本题考查正切函数的定义域,以及诱导公式的应用,属于基础题.6、B【解析】
抽样间隔为,由第三组中的第6个数被抽取到,结合226是第12组中的第6个数,从而可得结果.【详解】从这些新生中用系统抽样方法等距抽取50名学生进行体质测验,抽样间隔为,号学生被抽到,第四组中的第6个数被抽取到,226是第12组中的第6个数,被抽到,故选:B.【点睛】本题主要考查系统抽样的性质,确定抽样间隔是解题的关键,属于基础题.7、C【解析】试题分析:设,故选C.考点:解三角形.8、D【解析】
利用函数的奇偶性和单调性,逐一判断各个选项中的函数的奇偶性和单调性,进而得出结论.【详解】由于函数是奇函数,不是偶函数,故排除A;由于函数是偶函数,但它在区间上单调递增,故排除B;由于函数是奇函数,不是偶函数,故排除C;由于函数是偶函数,且满足在区间上单调递减,故满足条件.故答案为:D【点睛】本题主要考查了函数的奇偶性的判定及应用,其中解答中熟记函数的奇偶性的定义和判定方法,以及基本初等函数的奇偶性是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.10、A【解析】
利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【详解】在中,由正弦定理可得化为:即在中,,故,可得,即故选【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据的定义把带入即可。【详解】∵∴∵∴①∴②①-②得∴故答案为:【点睛】本题主要考查了新定义题,解新定义题首先需要读懂新定义,其次再根据题目的条件带入新定义即可,属于中等题。12、【解析】
由题又,故考虑用累加法求通项公式,再分析的最小值.【详解】,故,当且仅当时成立.又为正整数,且,故考查当时.当时,当时,因为,故当时,取最小值为.故答案为:.【点睛】本题主要考查累加法,求最小值时先用基本不等式,发现不满足“三相等”,故考虑与相等时的取值最近的两个正整数.13、4【解析】
由题意将表示为的方程组求解得,即可得等比数列的前三项分别为﹑、,则公比可求【详解】由题意可知,,又因为,,代入上式可得,所以该等比数列的前三项分别为﹑、,所以.故答案为:4【点睛】本题考查等差等比数列的基本量计算,考查计算能力,是基础题14、【解析】
根据题意可证得,而,所以球心为的中点.由球的表面积为,即可求出,继而得出的值,求出三棱锥的表面积.【详解】如图所示:∵,平面,∴,又,故球心为的中点.∵球的表面积为,∴,即有.∴,.∴,,,.故的表面积为.故答案为:.【点睛】本题主要考查三棱锥的表面积的求法,球的表面积公式的应用,意在考查学生的直观想象能力和数学运算能力,属于基础题.15、【解析】
根据圆锥的底面和外接球的截面性质可得外接球的球心在上,再根据勾股定理可得求的半径.【详解】由圆锥的底面和外接球的截面性质可得外接球的球心在上,设球心为,球的半径为,则,圆,因为,所以,所以,,则有.解得,则.【点睛】本题主要考查了几何体的外接球,关键是会找到球心求出半径,通常结合勾股定理求.属于难题.16、【解析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)【解析】
(1)利用同角的平方关系求cos(α-β)的值;(2)利用求出,再求的值.【详解】(1)因为,所以cos(α-β).(2)因为cosα=,所以,所以,因为β∈(0,),所以.【点睛】本题主要考查同角的三角函数的关系求值,考查差角的余弦,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)证明见解析;(2);(3)当时,没有零点;当时,有且仅有一个零点【解析】
(1)求出函数定义域后直接用定义法即可证明;(2)由题意得,对两边同时平方得,求出的取值范围即可得解;(3)转化条件得,令,利用二次函数的性质分类讨论即可得解.【详解】(1)证明:令,解得,故函数的定义域为令,由,可得,所以,,故即,所以函数在定义域上单调递增.(2)由,,故,,当时,,有,可得:,故,由,可得,故函数的值域为,(3)由(2)知,则,令,则,令,①当时,,此时函数没有零点,故函数也没有零点;②当时,二次函数的对称轴为,则函数在区间单调递增,而,,故函数有一个零点,又由函数单调递增,可得函数也只有一个零点;③当时,,二次函数开口向下,对称轴,又,,此时函数没有零点,故函数也没有零点.综上,当时,函数没有零点;当时,函数有且仅有一个零点.【点睛】本题考查了函数单调性的证明、值域的求解和零点问题,考查了转化化归思想和分类讨论思想,属于中档题.19、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.20、(1)见解析;(2)见解析.【解析】
(1)连接,证明后即得线面平行;(2)可证明平面,然后得面面垂直.【详解】(1)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物教学效果反馈与评估计划
- 西南交通大学《计算机辅助设计》2022-2023学年第一学期期末试卷
- 西南交通大学《插画》2021-2022学年第一学期期末试卷
- 西昌学院《教育心理学》2021-2022学年第一学期期末试卷
- 西北大学《写意花鸟》2022-2023学年第一学期期末试卷
- 西安邮电大学《微型计算机原理与接口技术》2022-2023学年第一学期期末试卷
- CSB事故案例专栏丨BP德克萨斯州炼油厂火灾爆炸事故
- 医院培训课件:《什么是糖尿病》
- 陕西西安市长安区2022-2023学年八年级上学期期末历史试题(解析版)
- 《质点动力学A》课件
- 同意未成年出国声明 - 中英
- 少年宫乒乓球兴趣小组简介
- 当事人送达地址、送达方式确认书模板
- 西医症状鉴别诊断全部
- 静脉输液流程图
- 国开电大本科《管理英语4》机考真题(第八套)
- DB5114T+51-2023东坡菜+干拌鸡烹饪工艺技术规范
- 基础会计第5版课后参考答案王艳茹
- 2023年电大【刑法学(2)】形成性考核册答案
- 北中大中药药剂学实验指导17临界相对湿度与吸湿速度的测定
- 二年级扩句练习
评论
0/150
提交评论