2025届湖北省松滋市四中数学高一下期末学业质量监测模拟试题含解析_第1页
2025届湖北省松滋市四中数学高一下期末学业质量监测模拟试题含解析_第2页
2025届湖北省松滋市四中数学高一下期末学业质量监测模拟试题含解析_第3页
2025届湖北省松滋市四中数学高一下期末学业质量监测模拟试题含解析_第4页
2025届湖北省松滋市四中数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省松滋市四中数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则比多了几项()A.1 B. C. D.2.下列函数中,在区间上是减函数的是()A. B. C. D.3.在某次测量中得到样本数据如下:,若样本数据恰好是样本每个数都增加得到,则、两样本的下列数字特征对应相同的是()A.众数 B.中位数 C.方差 D.平均数4.经过原点且倾斜角为的直线被圆C:截得的弦长是,则圆在轴下方部分与轴围成的图形的面积等于()A. B. C. D.5.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.40 B.36 C.30 D.206.如图,是的直观图,其中轴,轴,那么是()A.等腰三角形 B.钝角三角形 C.等腰直角三角形 D.直角三角形7.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择的游戏盘是A. B. C. D.8.经过,两点的直线方程为()A. B. C. D.9.已知实数满足,则的取值范围是()A. B. C. D.10.设,满足约束条件,则目标函数的最大值是()A.3 B. C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线平分圆,则的值为________.12.若关于的方程()在区间有实根,则最小值是____.13.若为幂函数,则满足的的值为________.14.已知,若,则______.15.已知数列的前项和是,且,则______.(写出两个即可)16.利用直线与圆的有关知识求函数的最小值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设两个非零向量与不共线,(1)若,,,求证:三点共线;(2)试确定实数,使和同向.18.已知直线l经过点.(1)若直线在两坐标轴上的截距相等,求直线的方程;(2)若,两点到直线的距离相等,求直线的方程.19.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.20.在中,已知内角所对的边分别为,已知,,的面积.(1)求边的长;(2)求的外接圆的半径.21.已知函数f(x)=asin(x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.(1)求a的值;(2)将△OPQ绕原点O按逆时针方向旋转角α(0<α),得到△OP′Q′,若点P′恰好落在曲线y(x>0)上(如图所示),试判断点Q′是否也落在曲线y(x>0),并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.2、C【解析】

根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.

在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.3、C【解析】

分别计算出、两个样本数据的众数、中位数、方差和平均数,再进行判断。【详解】样本的数据为:、、、、,没有众数,中位数为,平均数为,方差为,样本的数据为:、、、、,没有众数,中位数为,平均数为,方差为,因此,两个样本数据的方差没变,故选:D。【点睛】本题考查样本的数据特征,考查对样本数据的众数、中位数、平均数以及方差概念的理解,熟练利用相关公式计算这些数据,是解本题的关键,属于中等题。4、A【解析】

由已知利用垂径定理求得,得到圆的半径,画出图形,由扇形面积减去三角形面积求解.【详解】解:直线方程为,圆的圆心坐标为,半径为.圆心到直线的距离.则,解得.圆的圆心坐标为,半径为1.如图,,则,.,,圆在轴下方部分与轴围成的图形的面积等于.故选:.【点睛】本题考查直线与圆位置关系的应用,考查扇形面积的求法,考查计算能力,属于中档题.5、C【解析】试题分析:利用分层抽样的比例关系,设从乙社区抽取户,则,解得.考点:考查分层抽样.6、D【解析】

利用斜二测画法中平行于坐标轴的直线,平行关系不变这个原则得出的形状.【详解】在斜二测画法中,平行于坐标轴的直线,平行关系不变,则在原图形中,轴,轴,所以,,因此,是直角三角形,故选D.【点睛】本题考查斜二测直观图还原,解题时要注意直观图的还原原则,并注意各线段长度的变化,考查分析能力,属于基础题.7、A【解析】由几何概型公式:A中的概率为,B中的概率为,C中的概率为,D中的概率为.本题选择A选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.8、C【解析】

根据题目条件,选择两点式来求直线方程.【详解】由两点式直线方程可得:化简得:故选:C【点睛】本题主要考查了直线方程的求法,还考查了运算求解的能力,属于基础题.9、D【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.【详解】由线性约束条件作出可行域,如下图三角形阴影部分区域(含边界),令,直线:,平移直线,当过点时取得最大值,当过点时取得最小值,所以的取值范围是.【点睛】本题主要考查线性规划的应用.本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键.10、C【解析】

作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【点睛】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【点睛】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题12、【解析】

将看作是关于的直线方程,则表示点到点的距离的平方,根据距离公式可求出点到直线的距离最小,再结合对勾函数的单调性,可求出最小值。【详解】将看作是关于的直线方程,表示点与点之间距离的平方,点到直线的距离为,又因为,令,在上单调递增,所以,所以的最小值为.【点睛】本题主要考查点到直线的距离公式以及对勾函数单调性的应用,意在考查学生转化思想的的应用。13、【解析】

根据幂函数定义知,又,由二倍角公式即可求解.【详解】因为为幂函数,所以,即,因为,所以,即,因为,所以,.故填.【点睛】本题主要考查了幂函数的定义,正弦的二倍角公式,属于中档题.14、【解析】

由条件利用正切函数的单调性直接求出的值.【详解】解:函数在上单调递增,且,若,则,故答案为:.【点睛】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.15、或【解析】

利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.16、【解析】

令得,转化为z==,再利用圆心到直线距离求最值即可【详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【点睛】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】

(1)根据向量的运算可得,再根据平面向量共线基本定理即可证明三点共线;(2)根据平面向量共线基本定理,可设,由向量相等条件可得关于和的方程组,解方程组并由的条件确定实数的值.【详解】(1)证明:因为,,,所以.所以共线,又因为它们有公共点,所以三点共线.(2)因为与同向,所以存在实数,使,即.所以.因为是不共线的两个非零向量,所以解得或又因为,所以.【点睛】本题考查了平面向量共线定理的应用,三点共线的向量证明方法应用,属于基础题.18、(2)或(2)或【解析】

(2)讨论直线是否过原点,利用截距相等进行求解即可.(2)根据点到直线的距离相等,分直线平行和直线过A,B的中点两种情况进行求解即可.【详解】(2)若直线过原点,则设为y=kx,则k=2,此时直线方程为y=2x,当直线不过原点,设方程为2,即x+y=a,此时a=2+2=2,则方程为x+y=2,综上直线方程为y=2x或x+y=2.(2)若A,B两点在直线l同侧,则AB∥l,AB的斜率k2,即l的斜率为2,则l的方程为y﹣2=x﹣2,即y=x+2,若A,B两点在直线的两侧,即l过A,B的中点C(2,0),则k2,则l的方程为y﹣0=﹣2(x﹣2),即y=﹣2x+4,综上l的方程为y=﹣2x+4或y=x+2.【点睛】本题主要考查直线方程的求解,结合直线截距相等以及点到直线距离相等,进行分类讨论是解决本题的关键.19、(1)见解析(2)6【解析】

(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【详解】(1)连接交于,连接.四边形为矩形,∴为中点.又为中点,∴.又平面,平面,∴平面;(2)过作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.连接,则,又是矩形,易证,而,,得,由得,∴.又矩形的面积为8,∴.【点睛】本题考查直线与平面平行的证明,以及锥体体积的计算,直线与平面平行的证明,常用以下三种方法进行证明:(1)中位线平行;(2)平行四边形对边平行;(3)构造面面平行来证明线面平行.一般遇到中点找中点,根据已知条件类型选择合适的方法证明.20、(1);(2)【解析】

(1)由三角形面积公式可构造方程求得结果;(2)利用余弦定理可求得;利用正弦定理即可求得结果.【详解】(1)由得:,解得:(2)由余弦定理得:由正弦定理得:【点睛】本题考查利用正弦定理、余弦定理和三角形面积公式解三角形的问题,考查学生对于解三角形部分的公式掌握的熟练程度,属于基础应用问题.21、(1)2;(2)见解析.【解析】

(1)由已知利用周期公式可求最小正周期T=8,由题意可求Q坐标为(1,0).P坐标为(2,a),结合△OPQ为等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求点P′,Q′的坐标,由点P′在曲线y(x>0)上,利用倍角公式,诱导公式可求cos2,又结合0<α,可求sin2α的值,由于1cosα•1sinα=8sin2α=23,即可证明点Q′不落在曲线y(x>0)上.【详解】(Ⅰ)因为函数f(x)=asin(x)(a>0)的最小正周期T8,所以函数f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论