版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州盐山中学2025届高一下数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,角A,B,C对应的边分别是a,b,c,已知A=60°,a=43,A.30∘ B.45∘ C.602.()A. B. C. D.3.在中,角,,的对边分别为,,,且.则()A. B.或 C. D.4.已知直线:,:,:,若且,则的值为A. B.10 C. D.25.已知向量,,若,,则的最大值为()A. B. C.4 D.56.已知集合,,则()A. B.C. D.7.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛 B.22斛C.36斛 D.66斛8.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获9.已知一组数据1,3,2,5,4,那么这组数据的方差为()A.2 B.3 C.2 D.310.方程的解所在的区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,,则________.12.抽样调查某地区名教师的年龄和学历状况,情况如下饼图:则估计该地区岁以下具有研究生学历的教师百分比为_______.13.空间两点,间的距离为_____.14.如图记录了甲乙两名篮球运动员练习投篮时,进行的5组100次投篮的命中数,若这两组数据的中位数相等,平均数也相等,则______,_________.15.在中,,,是角,,所对应的边,,,如果,则________.16.若点在幂函数的图像上,则函数的反函数=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简.18.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.19.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sinBsinC的值.20.在等差数列中,,,等比数列中,,.(1)求数列,的通项公式;(2)若,求数列的前n项和.21.在区间内随机取两个数,则关于的一元二次方程有实数根的概率为__________.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据正弦定理求得sinB,根据大边对大角的原则可求得B【详解】由正弦定理asinA∵b<a∴B<A∴B=本题正确选项:A【点睛】本题考查正弦定理解三角形,易错点是忽略大边对大角的特点,属于基础题.2、B【解析】
根据诱导公式和两角和的余弦公式的逆用变形即可得解.【详解】由题:故选:B【点睛】此题考查两角和的余弦公式的逆用,关键在于熟记相关公式,准确化简求值.3、A【解析】
利用余弦定理和正弦定理化简已知条件,求得的值,即而求得的大小.【详解】由于,所以,由余弦定理和正弦定理得,即,由于是三角形的内角,所以为正数,所以,为三角形的内角,所以.故选:A【点睛】本小题主要考查正弦定理和余弦定理边角互化,考查三角形的内角和定理,考查两角和的正弦公式,属于基础题.4、C【解析】
由且,列出方程,求得,,解得的值,即可求解.【详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选C.【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题.5、A【解析】
设,由可得点的轨迹方程,再对两边平方,利用一元二次函数的性质求出最大值,即可得答案.【详解】设,,∵,∴,整理得:.∵,∴,当时,的最大值为,∴的最大值为.故选:A.【点睛】本题考查向量模的最值、模的坐标运算、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.6、A【解析】
先化简集合,根据交集与并集的概念,即可得出结果。【详解】因为,,所以,.故选A【点睛】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.7、B【解析】试题分析:设圆锥底面半径为r,则14×2×3r=8,所以r=163,所以米堆的体积为14考点:圆锥的性质与圆锥的体积公式8、B【解析】
利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.9、C【解析】
先由平均数的计算公式计算出平均数,再根据方差的公式计算即可。【详解】由题可得x=所以这组数据的方差S2故答案选C【点睛】本题考查方差的定义:一般地设n个数据:x1,x2,10、B【解析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由递推公式可以求出,可以归纳出数列的周期,从而可得到答案.【详解】由,,.,可推测数列是以3为周期的周期数列.所以。故答案为:【点睛】本题考查数量的递推公式同时考查数列的周期性,属于中档题.12、【解析】
根据饼状图中的岁以下本科学历人数和占比可求得岁以下教师总人数,从而可得其中的具有研究生学历的教师人数,进而得到所求的百分比.【详解】由岁以下本科学历人数和占比可知,岁以下教师总人数为:人岁以下有研究生学历的教师人数为:人岁以下有研究生学历的教师的百分比为:本题正确结果:【点睛】本题考查利用饼状图计算总体中的数据分布和频率分布的问题,属于基础题.13、【解析】
根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。14、3.5.【解析】
根据茎叶图,将两组数据按照从小到大顺序排列,由中位数和平均数相等,即可解得的值.【详解】甲乙两组数据的中位数相等,平均数也相等对于甲组将数据按照从小到大顺序排列后可知,中位数为65.所以乙组中位数也为65.根据乙组数据可得则由两组的平均数相等,可知两组的总数也相等,即解得故答案为:;【点睛】本题考查了茎叶图的简单应用,由茎叶图求中位数和平均数,属于基础题.15、【解析】
首先利用同角三角函数的基本关系求出,再利用正弦定理即可求解.【详解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案为:【点睛】本题考查了同角三角函数的基本关系以及正弦定理解三角形,需熟记公式,属于基础题.16、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
利用诱导公式进行化简,即可得到答案.【详解】原式.【点睛】本题考查诱导公式的应用,考查运算求解能力,求解时注意奇变偶不变,符号看象限这一口诀的应用.18、(Ⅰ)(Ⅱ)【解析】
(1)根据二倍角和诱导公式可得的值;(2)根据面积公式求,然后利用余弦定理求,最后根据正弦定理求的值.【详解】(1),,所以原式整理为,解得:(舍)或,;(2),解得,根据余弦定理,,,代入解得:,.【点睛】本题考查了根据正余弦定理解三角形,属于简单题.19、(1)(2)【解析】试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得和.试题解析:(1)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-2(舍去).因为0<A<π,所以A=.(2)由S=bcsinA=bc×=bc=5,得bc=20,又b=5,知c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,故a=.从而由正弦定理得sinBsinC=sinA×sinA=sin2A=×=.考点:1.二倍角公式;2.正余弦定理;3.三角形面积公式.【方法点睛】本题涉及到解三角形问题,所以有关三角问题的公式都有涉及,当出现时,就要考虑一个条件,,,这样就做到了有效的消元,涉及三角形的面积问题,就要考虑公式,灵活使用其中的一个.20、(1),(2)【解析】
(1)根据等差数列的通项公式求出首项,公差和等比数列的通项公式求出首项,公比即可.
(2)由用错位相减法求和.【详解】(1)在等差数列中,设首项为,公差为.由,有,解得:所以又设的公比为,由,,得所以.(2)…………………①……………②由①-②得所以【点睛】本题考查求等差、等比数列的通项公式和用错位相减法求和,属于中档题.21、【解析】试题分析:解:在平面直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国电镀污水处理系统行业市场发展态势及投资前景研判报告
- 2025年中国粮油行业市场运行态势、进出口贸易及发展趋势预测报告
- 旅游行业导游服务质量标准
- 购房合同 读书
- epc项目全过程管理合同
- 2千字以内的贸易合同
- (民法典合同编)第二十七条
- 《中国餐桌礼仪文化》课件
- 【课件】药品安全性监测与风险管理
- 中国润滑油行业研究报告 2024
- DB14-T 2862-2023 柿树容器大苗培育技术规程
- 2024年湖南省中考英语真题卷及答案解析
- 储能科学与工程基础知识单选题100道及答案解析
- 食品干杂供销合同(2篇)
- 湖北省鄂东南省级示范高中教育教学改革联盟学校2024-2025学年高一上学期期中联考英语试题 含答案
- 2024-2025学年河南省“金太阳联考”高一年级上学期期中考试数学试题(含答案)
- DB11-T 2324-2024脚手架钢板立网防护应用技术规程
- 建筑施工安全隐患排查与风险评估方案
- 燃气工程管理制度
- 绿化服务承诺与质量保证措施方案
- DB3502T 081-2022 竹荪栽培技术规程
评论
0/150
提交评论