版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省永州市东安县一中高一下数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列{an}为等差数列,Sn是它的前n项和.若=2,S3=12,则S4=()A.10 B.16 C.20 D.242.在一个平面上,机器人到与点的距离为8的地方绕点顺时针而行,它在行进过程中到经过点与的直线的最近距离为()A. B. C. D.3.已知不等式的解集是,则()A. B.1 C. D.34.下列角位于第三象限的是()A. B. C. D.5.已知集合,,,则()A. B. C. D.6.下列函数的最小值为的是()A. B.C. D.7.的值为()A. B. C. D.8.若直线经过点,则此直线的倾斜角是()A. B. C. D.9.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A., B.,C., D.,10.如图,是水平放置的的直观图,则的面积是()A.6 B. C. D.12二、填空题:本大题共6小题,每小题5分,共30分。11.有一个底面半径为2,高为2的圆柱,点,分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点或的距离不大于1的概率是________.12.在三棱锥中,已知,,则三棱锥内切球的表面积为______.13.若,则函数的值域为________.14.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.15.已知,,若,则实数_______.16.把“五进制”数转化为“十进制”数是_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,数列满足,其中为的前项和,且(1)求数列和的通项公式(2)求数列的前项和.18.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.19.如图,在四棱锥中,,底面是矩形,侧面底面,是的中点.(1)求证:平面;(2)求证:平面.20.已知数列满足,,,.(1)证明:数列是等比数列;(2)求数列的通项公式;(3)证明:.21.已知函数.(1)求在区间上的单调递增区间;(2)求在的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据等差数列的前n项和公式,即可求出.【详解】因为S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【点睛】本题主要考查了等差数列的前n项和公式,属于中档题.2、A【解析】
由题意知机器人的运行轨迹为圆,利用圆心到直线的距离求出最近距离.【详解】解:机器人到与点距离为8的地方绕点顺时针而行,在行进过程中保持与点的距离不变,机器人的运行轨迹方程为,如图所示;与,直线的方程为,即为,则圆心到直线的距离为,最近距离为.故选.【点睛】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于基础题.3、A【解析】
的两个解为-1和2.【详解】【点睛】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。4、D【解析】
根据第三象限角度的范围,结合选项,进行分析选择.【详解】第三象限的角度范围是.对A:,是第二象限的角,故不满足题意;对B:是第二象限的角度,故不满足题意;对C:是第二象限的角度,故不满足题意;对D:,是第三象限的角度,满足题意.故选:D.【点睛】本题考查角度范围的判断,属基础题.5、C【解析】由题意得,因为,所以,所以,故,故选C.6、C【解析】分析:利用基本不等式的性质即可判断出正误,注意“一正二定三相等”的使用法则.详解:A.时显然不满足条件;B.其最小值大于1.D.令因此不正确.故选C.点睛:本题考查基本不等式,考查通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.7、B【解析】
直接利用诱导公式结合特殊角的三角函数求解即可.【详解】,故选B.【点睛】本题主要考查诱导公式以及特殊角的三角函数,意在考查对基础知识的掌握情况,属于简单题.8、D【解析】
先通过求出两点的斜率,再通过求出倾斜角的值。【详解】,选D.【点睛】先通过求出两点的斜率,再通过求出倾斜角的值。需要注意的是斜率不存在的情况。9、C【解析】
直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义的理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.10、D【解析】由直观图画法规则,可得是一个直角三角形,直角边,,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点到点,的距离不大于1的概率;【详解】解:由题意可知,点P到点或的距离都不大于1的点组成的集合分别以、为球心,1为半径的两个半球,其体积为,又该圆柱的体积为,则所求概率为.故答案为:【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.12、【解析】
先计算出三棱锥的体积,利用等体积法求出三棱锥的内切球的半径,再求出内切球的表面积。【详解】取CD中点为E,并连接AE、BE在中,由等腰三角形的性质可得,同理则在中点A到边BE的距离即为点A到平面BCD的距离h,在中,【点睛】本题综合考查了三棱锥的体积、三棱锥内切圆的求法、球的表面积,属于中档题.13、【解析】
令,结合可得,本题转化为求二次函数在的值域,求解即可.【详解】,.令,,则,由二次函数的性质可知,当时,;当时,.故所求值域为.【点睛】本题考查了函数的值域,利用换元法是解决本题的一个方法.14、【解析】
根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【点睛】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.15、【解析】
利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.16、194【解析】由.故答案为:194.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由题意可得,由等差数列的通项公式可得;由数列的递推式,结合等比数列的定义和通项公式可得;(2),运用数列的错位相减法求和,结合等比数列的求和公式可得所求和.【详解】解:(1)由,同乘以得,可知是以2为公差的等差数列,而,故;又,相减得,,可知是以为公比的等比数列,而,故;(2)因为,,,两式相减得.【点睛】本题主要考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查化简运算能力,属于中档题.18、(I);(II).【解析】
(I)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(II)由(I)可得,进而可利用等比数列求和公式进行求解.【详解】(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.19、(1)证明见解析;(2)证明见解析.【解析】
(1)利用即可证明;(2)由面面垂直的性质即可证明.【详解】证明:(1)在四棱锥中,底面是矩形,,又平面,平面;平面;(2)侧面底面,侧面平面,,平面,平面【点睛】本题考查了空间线面平行、垂直的证明,属于基础题.20、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由,得,即可得到本题答案;(2)由,得,即可得到本题答案;(3)当时,满足题意;若n是偶数,由,可得;当n是奇数,且时,由,可得,综上,即可得到本题答案.【详解】(1)因为,所以,因为,所以,所以数列是等比数列;(2)因为,所以,所以,又因为,所以,所以是以为首项,为公比的等比数列,所以,所以;(3)①当时,;②若n是偶数,则,所以当n是偶数时,;③当n是奇数,且时,;综上所述,当时,.【点睛】本题主要考查利用构造法证明等比数列并求通项公式,以及数列与不等式的综合问题.21、(1)和.(2)【解析】
(1)利用辅助角公式可将函数化简为;令可求出的单调递增区间,截取在上的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 从生活中学习提升综合素养计划
- 挥发性有机物行业相关投资计划提议范本
- 个性化教学与学生差异化发展的探索计划
- 剧装道具相关工艺美术品行业相关投资计划提议范本
- 课程改革与新教材实施计划
- ZRO2陶瓷制品行业相关投资计划提议
- 环保教育在班级活动中的融入计划
- 《保险经营与监管》课件
- 2023-2024学年江苏省南京市江宁区部编版五年级上册期末考试语文试卷(原卷版)-A4
- 《鸡白痢培训课件》课件
- 部编版五年级上册语文期末复习知识点总结
- 中医内科学肥胖课件
- 航天航空与国防行业“铸剑”系列深度报告(五):军品定价机制改革~激励与补偿的艺术
- 国开公共政策概论形考任务4试题及答案
- (完整版)马克思主义基本原理概论知识点
- 钟点工雇佣协议书3篇
- 电子耳蜗植入术后护理查房课件
- 星巴克哈佛商学院案例
- ICS(国际标准分类法)分类
- 【规划】高中语文教师专业成长五年规划
- 华南农业大学农学院生物技术复习题附答案
评论
0/150
提交评论