版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市长郡湘府中学2025届数学高一下期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三棱柱的底面为直角三角形,侧棱长为2,体积为1,若此三棱柱的顶点均在同一球面上,则该球半径的最小值为()A.1 B.2 C. D.2.函数在的图像大致为A. B.C. D.3.若非零实数满足,则下列不等式成立的是()A. B. C. D.4.若,则是()A.等边三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形5.已知数列满足,则()A.2 B. C. D.6.已知等比数列的前n项和为,若,,,则()A. B. C. D.7.若关于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)8.在中,设角,,的对边分别是,,,且,则一定是()A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形9.将所有的正奇数按以下规律分组,第一组:1;第二组:3,5,7;第三组:9,11,13,15,17;…表示n是第i组的第j个数,例如,,则()A. B. C. D.10.直线的倾斜角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.12.数列是等比数列,,,则的值是________.13.在上定义运算,则不等式的解集为_____.14.67是等差数列-5,1,7,13,……中第项,则___________________.15.已知当时,函数(且)取得最小值,则时,的值为__________.16.设,若用含的形式表示,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校进行学业水平模拟测试,随机抽取了名学生的数学成绩(满分分),绘制频率分布直方图,成绩不低于分的评定为“优秀”.(1)从该校随机选取一名学生,其数学成绩评定为“优秀”的概率;(2)估计该校数学平均分(同一组数据用该组区间的中点值作代表).18.已知向量,函数,且当,时,的最小值为.(1)求的值,并求的单调递增区间;(2)先将函数的图象上所有点的横坐标缩小到原来的倍(纵坐标不变),再将所得图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.19.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.20.在直角坐标系中,点,圆的圆心为,半径为2.(Ⅰ)若,直线经过点交圆于、两点,且,求直线的方程;(Ⅱ)若圆上存在点满足,求实数的取值范围.21.如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)线段AD上是否存在点,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先证明棱柱为直棱柱,再求出棱柱外接球的半径,利用基本不等式求出其最小值.【详解】∵三棱柱内接于球,∴棱柱各侧面均为平行四边形且内接于圆,所以棱柱的侧棱都垂直底面,所以该三棱柱为直三棱柱.设底面三角形的两条直角边长为,,∵三棱柱的高为2,体积是1,∴,即,将直三棱柱补成一个长方体,则直三棱柱与长方体有同一个外接球,所以球的半径为.故选D【点睛】本题主要考查几何体外接球的半径的计算和基本不等式求最值,意在考查学生对这些知识的理解掌握水平,属于基础题.2、C【解析】
由解析式研究函数的性质奇偶性、特殊函数值的正负,可选择正确的图象.【详解】易知函数()是偶函数,图象关于轴对称,可排除BD,时,,可排除A.故选C.【点睛】本题考查由函数解析式选择函数图象,解题方法是由解析式分析函数的性质,如单调性、奇偶性、函数的极值、最值、特殊值、函数的值的正负等等.3、C【解析】
对每一个不等式逐一分析判断得解.【详解】A,不一定小于0,所以该选项不一定成立;B,如果a<0,b<0时,不成立,所以该选项不一定成立;C,,所以,所以该不等式成立;D,不一定小于0,所以该选项不一定成立.故选:C【点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.4、D【解析】
先根据题中条件,结合正弦定理得到,求出角,同理求出角,进而可判断出结果.【详解】因为,由正弦定理可得,所以,即,因为角为三角形内角,所以;同理,;所以,因此,是等腰直角三角形.故选D【点睛】本题主要考查判定三角形的形状问题,熟记正弦定理即可,属于常考题型.5、B【解析】
利用数列的递推关系式,逐步求解数列的即可.【详解】解:数列满足,,所以,.故选:B.【点睛】本题主要考查数列的递推关系式的应用,属于基础题.6、D【解析】
根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.7、B【解析】
由题意,得出a≠0,再分析不等式开口和判别式,可得结果.【详解】由题,因为为一元二次不等式,所以a≠0又因为ax所以a>0Δ=故选B【点睛】本题考查了一元二次不等式解法,利用二次函数图形解题是关键,属于基础题.8、C【解析】
利用二倍角公式化简已知表达式,利用余弦定理化角为边的关系,即可推出三角形的形状.【详解】解:因为,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故选:.【点睛】本题考查三角形的形状的判断,余弦定理的应用,考查计算能力,属于中档题.9、C【解析】
由等差数列求和公式及进行简单的合情推理可得:2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,得解.【详解】由已知有第n组有2n-1个连续的奇数,则前n组共有个连续的奇数,又2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,即2019=(32,49),故选:C.【点睛】本题考查归纳推理,解题的关键是根据等差数列求和公式分析出规律,再结合数列的性质求解,属于中等题.10、B【解析】
先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.12、【解析】
由题得计算得解.【详解】由题得,所以.因为等比数列同号,所以.故答案为:【点睛】本题主要考查等比数列的性质和等比中项的应用,意在考查学生对这些知识的理解掌握水平.13、【解析】
根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.14、13【解析】
根据数列写出等差数列通项公式,再令算出即可.【详解】由题意,首项为-5,公差为,则等差数列通项公式,令,则故答案为:13.【点睛】等差数列首项为公差为,则通项公式15、3【解析】
先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.16、【解析】
两边取以5为底的对数,可得,化简可得,根据对数运算即可求出结果.【详解】因为所以两边取以5为底的对数,可得,即,所以,,故填.【点睛】本题主要考查了对数的运算法则,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)该校数学平均分为.【解析】
(1)计算后两个矩形的面积之和,可得出结果;(2)将每个矩形底边中点值乘以相应矩形的面积,再将这些积相加可得出该校数学平均分.【详解】(1)从该校随机选取一名学生,成绩不低于分的评定为“优秀”的频率为,所以,数学成绩评定为“优秀”的概率为;(2)估计该校数学平均分.【点睛】本题考查频率分布直方图频率和平均数的计算,解题时要熟悉频率和平均数的计算原则,考查计算能力,属于基础题.18、(1),;(2).【解析】
(1)运用向量的数量积运算和辅助角公式化简,求解和求其单调区间;(2)根据图像的平移和函数的对称轴求解.【详解】(1)函数,得.即,由题意得,得所以,函数的单调增区间为.(2)由题意,,又,得解得:或即或或故所有根之和为.【点睛】本题考查正弦型函数的值域、单调性和对称性,属于基础题.19、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解析】
(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润.【详解】(1)由题意,可得利润W关于年产量x的函数关系式为W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,当且仅当400000x=160,即x=50时取等号,所以当x=50时,【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润W关于年产量x的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)勾股定理求出圆心到直线的距离d,利用d=1以直线的斜率存在、不存在两种情况进行分类讨论;(Ⅱ)设,由求出x、y满足的关系式,可得点在圆上,推出圆与圆有公共点,所以,列出不等式求解即可.【详解】(Ⅰ)当,圆心为,圆的方程为,设圆心到直线的距离为,则.①若直线的斜率存在,设直线的方程为,即,,解得,此时的方程为,即.②若直线的斜率不存在,直线的方程为,验证满足,符合题意.综上所述,直线的方程为或.(Ⅱ)设,则,于是由得,即,所以点在圆上,又点在圆上,故圆与圆有公共点,即,于是,解得,因此实数的取值范围是.【点睛】本题考查直线与圆的位置
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度xyz与pqr就智慧城市解决方案的合作合同
- 建筑工程施工补充合同
- 2024年度南京二手房买卖合同
- 2024店铺商铺租赁合同范本
- 合伙开店合同:共同经营店铺协议书样本
- 承揽合同与雇佣合同的实质区别
- 工程合同风险管理
- 专业劳务派遣合同协议
- 招商引资协议案例
- 2024年水电工承包合同范本
- 2024年江苏南京市驻宁部队军人随军家属(事业编制)定向招聘60人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 2024入团考试题库含答案(完整版)
- 幼儿园可行性研究报告范文(8篇)
- 2024年辽宁工程技术大学马克思主义基本原理概论(期末考试题+答案)0
- 数字经济职业生涯规划
- 糖尿病药物治疗
- 部队心理健康与预防
- 2024年医疗器械培训记录
- 人力资源管理百年:演变与发展
- 材料成型工艺pdf
- 胃溃疡伴出血的护理查房
评论
0/150
提交评论