版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市长安区一中2025届数学高一下期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.2.已知如图正方体中,为棱上异于其中点的动点,为棱的中点,设直线为平面与平面的交线,以下关系中正确的是()A. B.C.平面 D.平面3.已知,,则()A. B. C. D.4.用表示不超过的最大整数(如,).数列满足,若,则的所有可能值的个数为()A.1 B.2 C.3 D.45.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①;②;③.其中正确命题的个数是()A.3 B.2 C.1 D.06.设的内角,,的对边分别为,,.若,,,且,则()A. B. C. D.7.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.8.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)9.已知是球O的球面上四点,面ABC,,则该球的半径为()A. B. C. D.10.如果存在实数,使成立,那么实数的取值范围是()A. B.或C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.12.△ABC中,,,则=_____.13.在中,分别是角的对边,已知成等比数列,且,则的值为________.14.已知等差数列的前三项为,则此数列的通项公式为______15.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.16.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知分别为内角的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①;②.(1)求角(2)若,,求的面积.18.设数列的前项和为,对于,,其中是常数.(1)试讨论:数列在什么条件下为等比数列,请说明理由;(2)设,且对任意的,有意义,数列的前项和为.若,求的最大值.19.已知函数的最大值是1,其图像经过点(1)求的解析式;(2)已知且求的值。20.已知公差不为零的等差数列满足:,且成等比数列.(1)求数列的通项公式.(2)记为数列的前项和,是否存在正整数,使得?若存在,请求出的最小值;若不存在,请说明理由.21.某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.日期第1天第2天第3天第4天第5天温度(℃)101113128发芽数(颗)2326322616(1)求余下的2组数据恰好是不相邻2天数据的概率;(2)若选取的是第2、3、4天的数据,求关于的线性回归方程;(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?(参考公式;线性回归方程中系数计算公式:,,其中、表示样本的平均值)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.2、C【解析】
根据正方体性质,以及线面平行、垂直的判定以及性质定理即可判断.【详解】因为在正方体中,,且平面,平面,所以平面,因为平面,且平面平面,所以有,而,则与不平行,故选项不正确;若,则,显然与不垂直,矛盾,故选项不正确;若平面,则平面,显然与正方体的性质矛盾,故不正确;而因为平面,平面,所以有平面,所以选项C正确,.【点睛】本题考查了线线、线面平行与垂直的关系判断,属于中档题.3、C【解析】
由放缩法可得出,再利用特殊值法以及不等式的基本性质可判断各选项中不等式的正误.【详解】,,可得.取,,,则A、D选项中的不等式不成立;取,,,则B选项中的不等式不成立;且,由不等式的基本性质得,C选项中的不等式成立.故选:C.【点睛】本题考查不等式正误的判断,一般利用不等式的性质或特殊值法进行判断,考查推理能力,属于中等题.4、C【解析】
数列取倒数,利用累加法得到通项公式,再判断的所有可能值.【详解】两边取倒数:利用累加法:为递增数列.计算:,整数部分为0,整数部分为1,整数部分为2的所有可能值的个数为0,1,2答案选C【点睛】本题考查了累加法求数列和,综合性强,意在考查学生对于新知识的阅读理解能力,解决问题的能力,和计算能力.5、C【解析】
由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;
②,则平行,相交,异面都有可能,故不正确;
③,则与α平行,相交都有可能,故不正确.
故选:C.【点睛】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.6、B【解析】由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.7、A【解析】
根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.8、D【解析】
仔细观察图象,寻找散点图间的相互关系,主要观察这些散点是否围绕一条曲线附近排列着,由此能够得到正确答案.【详解】散点图(1)中,所有的散点都在曲线上,所以(1)具有函数关系;
散点图(2)中,所有的散点都分布在一条直线的附近,所以(2)具有相关关系;
散点图(3)中,所有的散点都分布在一条曲线的附近,所以(3)具有相关关系,
散点图(4)中,所有的散点杂乱无章,没有分布在一条曲线的附近,所以(4)没有相关关系.
故选D.【点睛】本题考查散点图和相关关系,是基础题.9、D【解析】
根据面,,得到三棱锥的三条侧棱两两垂直,以三条侧棱为棱长得到一个长方体,且长方体的各顶点都在该球上,长方体的对角线的长就是该球的直径,从而得到答案。【详解】面,三棱锥的三条侧棱,,两两垂直,可以以三条侧棱,,为棱长得到一个长方体,且长方体的各顶点都在该球上,长方体的对角线的长就是该球的直径,即则该球的半径为故答案选D【点睛】本题考查三棱锥外接球的半径的求法,本题解题的关键是以三条侧棱为棱长得到一个长方体,三棱锥的外接球,即为该长方体的外接球,利用长方体外接球的直径为长对角线的长,属于基础题。10、A【解析】
根据,可得,再根据基本不等式取等的条件可得答案.【详解】因为,所以,即,即,又(当且仅当时等号成立)所以,所以.故选:A【点睛】本题考查了余弦函数的值域,考查了基本不等式取等的条件,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.12、【解析】试题分析:三角形中,,由,得又,所以有正弦定理得即即A为锐角,由得,因此考点:正余弦定理13、【解析】
利用成等比数列得到,再利用余弦定理可得,而根据正弦定理和成等比数列有,从而得到所求之值.【详解】∵成等比数列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因为,所以,故.故答案为.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.14、【解析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.15、【解析】
在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【点睛】本题考查了向量的夹角、模的运算,属于中档题.16、6【解析】
先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【点睛】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择①,;选择②,(2)【解析】
(1)选择①,利用正弦定理余弦定理化简即得C;选择②,利用正弦定理化简即得C的值;(2)根据余弦定理得,再求的面积.【详解】解:(1)选择①根据正弦定理得,从而可得,根据余弦定理,解得,因为,故.选择②根据正弦定理有,即,即因为,故,从而有,故(2)根据余弦定理得,得,即,解得,又因为的面积为,故的面积为.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1)当,且时,数列一定为等比数列.理由见解析;(2)【解析】
(1)利用等比数列的定义证明数列为等比数列.(2)利用(1)的结论,进一步求出数列的和及最大值.【详解】解:(1)对于,,,①.②①减②得,即,,.当,且时,数列一定为等比数列.(2)由(1)得,,由,得,即(或)由可解得.所以,.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在求数列的通项公式中的应用,主要考查学生的运算能力和转化能力,属于基础题型.19、(1)(2)【解析】本题(1)属于基础问题,根据题意首先可求得A,再将点M代入即可求得解析式;对于(2)可先将函数f(x)的解析式化简,再带入,利用两角差的余弦公式可求解;(1)依题意知A=1,又图像经过点M∴,再由得即因此;(2),且,;20、(1)(2)存在,最小值是.【解析】
(1)利用等比中项的性质列方程,将已知条件转化为的形式列方程组,解方程组求得,由此求得数列的通项公式.(2)首先求得数列的前项和,由列不等式,解一元二次不等式求得的取值范围,由此求得的最小值.【详解】(1)设等差数列的公差为(),由题意得化简,得.因为,所以,解得所以,即数列的通项公式是().(2)由(1)可得.假设存在正整数,使得,即,即,解得或(舍).所以所求的最小值是.【点睛】本小题主要考查等比中项的性质,考查等差数列通项公式的基本量计算,考查等差数列前项和公式,考查一元二次不等式的解法,属于中档题.21、(1);(2);(3)线性回归方程是可靠的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶泵机租赁合同
- 医疗创新项目管理流程
- 智能机场智能化施工合同
- 住院期间患者离院管理
- 建筑绿化安全合同协议书
- 医保业务数据
- 植物园水电设施施工协议
- 电力工程皮卡租赁协议
- 医疗器械招标评分索引表模板
- 神经外科护理观察典型案例
- 食材配送服务方案(技术方案)
- 生物 七年级 人教版 生物体的结构层次 单元作业设计
- 小学英语-My father has short hair教学课件设计
- Unit4+Understanding+Ideas+Click+for+a+friend 高中英语外研版(2019)必修第一册
- 新教科版科学六年级上册期末综合测试卷(五)
- HACCP风险评估报告样板
- 便携式野外净水器设计
- 因孩子上学房子过户协议书
- 幼儿园课程审议制度
- 大学生就业指导-面试技巧课件
- 建设工程第三方质量安全巡查标准
评论
0/150
提交评论