版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包铁第一中学2025届数学高一下期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数,则的值为()A. B. C. D.2.已知a,b,c为实数,则下列结论正确的是()A.若ac>bc>0,则a>b B.若a>b>0,则ac>bcC.若ac2>bc2,则a>b D.若a>b,则ac2>bc23.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里4.同时掷两个骰子,向上的点数之和是的概率是()A. B. C. D.5.已知内角的对边分别为,满足且,则△ABC()A.一定是等腰非等边三角形 B.一定是等边三角形C.一定是直角三角形 D.可能是锐角三角形,也可能是钝角三角形6.已知实数满足,则的最大值为()A. B. C. D.7.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.8.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.89.下列函数中是偶函数且最小正周期为的是()A. B.C. D.10.不等式的解集是A.或 B.或C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,那么__________.12.在中,角所对的边分别为,若,则=______.13.382与1337的最大公约数是__________.14.已知,且,.则的值是________.15.在等差数列中,,,则.16.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.18.如图,中,,角的平分线长为1.(1)求;(2)求边的长.19.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有20.若在定义域内存在实数,使得成立,则称函数有“和一点”.(1)函数是否有“和一点”?请说明理由;(2)若函数有“和一点”,求实数的取值范围;(3)求证:有“和一点”.21.在中,角A,B,C的对边分别为a,b,c,已知.(1)求角B的大小;(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据分段函数的定义域与函数解析式的关系,代值进行计算即可.【详解】解:由已知,又,又,所以:.
故选:D.【点睛】本题考查了分段函数的函数值计算问题,抓住定义域的范围,属于基础题.2、C【解析】
本题可根据不等式的性质以及运用特殊值法进行代入排除即可得到正确结果.【详解】由题意,可知:对于A中,可设,很明显满足,但,所以选项A不正确;对于B中,因为不知道的正负情况,所以不能直接得出,所以选项B不正确;对于C中,因为,所以,所以,所以选项C正确;对于D中,若,则不能得到,所以选项D不正确.故选:C.【点睛】本题主要考查了不等式性质的应用以及特殊值法的应用,着重考查了推理能力,属于基础题.3、C【解析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.4、C【解析】
分别计算出所有可能的结果和点数之和为的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是的共有:,共种结果点数之和是的概率为:本题正确选项:【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.5、B【解析】
根据正弦定理可得和,然后对进行分类讨论,结合三角形的性质,即可得到结果.【详解】在中,因为,所以,又,所以,又当时,因为,所以时等边三角形;当时,因为,所以不存在,综上:一定是等边三角形.故选:B.【点睛】本题主要考查了正弦定理的应用,解题过程中注意两解得情况,一般需要检验,本题属于基础题.6、A【解析】
由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【点睛】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.7、A【解析】
分类,按在正方形的四条边上分别求解.【详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【点睛】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.8、B【解析】
如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】9、A【解析】
本题首先可将四个选项都转化为的形式,然后对四个选项的奇偶性以及周期性依次进行判断,即可得出结果.【详解】中,函数,是偶函数,周期为;中,函数是奇函数,周期;中,函数,是非奇非偶函数,周期;中,函数是偶函数,周期.综上所述,故选A.【点睛】本题考查对三角函数的奇偶性以及周期性的判断,考查三角恒等变换,偶函数满足,对于函数,其最小正周期为,考查化归与转化思想,是中档题.10、C【解析】
把原不等式化简为,即可求解不等式的解集.【详解】由不等式即,即,得,则不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的求解,其中把不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2017【解析】,故,由此得.【点睛】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.12、【解析】根据正弦定理得13、191【解析】
利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.14、2【解析】
.15、8【解析】
设等差数列的公差为,则,所以,故答案为8.16、【解析】
利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1){x|x≤-1或x=1};(2);(3).【解析】试题分析:(1)把代入函数解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段写出函数的解析式,由在上单调递增,则需第一段二次函数的对称轴小于等于,第二段一次函数的一次项系数大于0,且第二段函数的最大值小于等于第一段函数的最小值,联立不等式组后求解的取值范围;(3)把不等式对一切实数恒成立转化为函数对一切实数恒成立,然后对进行分类讨论,利用函数单调性求得的范围,取并集后得答案.试题解析:(1)当时,,则;当时,由,得,解得或;当时,恒成立,∴方程的解集为或.(2)由题意知,若在R上单调递增,则解得,∴实数的取值范围为.(3)设,则,不等式对任意恒成立,等价于不等式对任意恒成立.①若,则,即,取,此时,∴,即对任意的,总能找到,使得,∴不存在,使得恒成立.②若,则,∴的值域为,∴恒成立③若,当时,单调递减,其值域为,由于,所以恒成立,当时,由,知,在处取得最小值,令,得,又,∴,综上,.18、(1)(2)【解析】
(1)由题意知为锐角,利用二倍角余弦公式结合条件可计算出的值;(2)利用内角和定理以及诱导公式计算出,在中利用正弦定理可计算出.【详解】(1),则B为锐角,;(2),在中,由,得.【点睛】本题考查二倍角余弦公式、以及利用正弦定理解三角形,解三角形有关问题时,要根据已知元素类型合理选择正弦定理与余弦定理,考查计算能力,属于中等题.19、(1)证明见解析.(2)证明见解析.【解析】
(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项公式,并变形后令.由求得的取值范围,即可表示出,由不等式性质进行放缩,求得后,即可证明不等式成立.【详解】(1)证明:各项为正数的数列满足:则,,同取倒数可得,所以,由等差数列定义可知数列为等差数列.(2)证明:由(1)可知数列为等差数列.,则数列是以为首项,以为公差的等差数列.则,令,因为,所以,则,所以,所以,所以由不等式性质可知,若,则总成立,因而,所以所以不等式得证.【点睛】本题考查了数列递推公式的应用,由定义证明等差数列,换元法及放缩法在证明不等式中的应用,属于中档题.20、(1)不存在;(2)a>﹣2;(3)见解析【解析】
(1)解方程即可判断;(2)由题转化为2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分离参数a=2x﹣2求值域即可求解;(3)由题意判断方程cos(x+1)=cosx+cos1是否有解即可.【详解】(1)若函数有“和一点”,则不合题意故不存在(2)若函数f(x)=2x+a+2x有“和一点”.则方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)证明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年级学生动员讲话5篇
- 2024年广告物料特许经营合同
- 招标投标项目监督受贿罪案例
- 矿业公司防盗门安装合同
- 西安市二手房公积金贷款合同
- 节能环保工程师聘用合同
- 环保组织年休假安排策略
- 摄影器材租赁合同文本
- 财务制度建设与优化指导
- 商业购销合同实务指南
- 《婴幼儿行为观察、记录与评价》习题库 (项目三) 0 ~ 3 岁婴幼儿语言发展观察、记录与评价
- 英语漫谈胶东海洋文化知到章节答案智慧树2023年威海海洋职业学院
- 环保产品管理规范
- 幼儿园:我中奖了(实验版)
- 赵学慧-老年社会工作理论与实务-教案
- 《世界主要海峡》
- 住院医师规范化培训师资培训
- 中央企业商业秘密安全保护技术指引2015版
- 螺旋果蔬榨汁机的设计
- 《脊柱整脊方法》
- 会计与财务管理专业英语智慧树知到答案章节测试2023年哈尔滨商业大学
评论
0/150
提交评论