版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省临沭一中高一数学第二学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π2.已知的内角的对边分别为,若,则()A. B. C. D.3.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则4.已知,,则()A. B. C. D.5.已知点,,则直线的斜率是()A. B. C.5 D.16.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.7.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为()A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法9.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()A.2张恰有一张是移动卡 B.2张至多有一张是移动卡C.2张都不是移动卡 D.2张至少有一张是移动卡10.下列说法正确的是()A.命题“若,则.”的否命题是“若,则.”B.是函数在定义域上单调递增的充分不必要条件C.D.若命题,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图象如图所示,则的单调增区间是______.12.在锐角中,角的对边分别为.若,则角的大小为为____.13.已知与的夹角为,,,则________.14.如图,在边长为的菱形中,,为中点,则______.15.已知中内角的对边分别是,,,,则为_____.16.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.18.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.19.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.20.已知.(1)求的值:(2)求的值.21.如图,在四棱锥中,底面是正方形,底面,点是的中点,点是和的交点.(1)证明:平面;(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.2、B【解析】
已知两角及一对边,求另一边,我们只需利用正弦定理.【详解】在三角形中由正弦定理公式:,所以选择B【点睛】本题直接属于正弦定理的直接考查,代入公式就能求解.属于简单题.3、D【解析】
逐一分析选项,得到答案.【详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【点睛】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.4、C【解析】
利用二倍角公式变形为,然后利用弦化切的思想求出的值,可得出角的值.【详解】,化简得,,则,,因此,,故选C.【点睛】本题考查二倍角公式的应用,考查弦切互化思想的应用,考查给值求角的问题,着重考查学生对三角恒等变换思想的应用能力,属于中等题.5、D【解析】
根据直线的斜率公式,准确计算,即可求解,得到答案.【详解】由题意,根据直线的斜率公式,可得直线的斜率,故选D.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.6、D【解析】
利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.7、D【解析】;,与没有包含关系,故为“既不充分也不必要条件”.8、B【解析】①由于社会购买力与收入有关系,所以应采用分层抽样法;②由于人数少,可以采用简单随机抽样法要完成下列二项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中,选出100户调查社会解:∵社会购买力的某项指标,受到家庭收入的影响而社区中各个家庭收入差别明显①用分层抽样法,而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法故选B9、B【解析】
概率的事件可以认为是概率为的对立事件.【详解】事件“2张全是移动卡”的概率是,它的对立事件的概率是,事件为“2张不全是移动卡”,也即为“2张至多有一张是移动卡”.故选B.【点睛】本题考查对立事件,解题关键是掌握对立事件的概率性质:即对立事件的概率和为1.10、D【解析】“若p则q”的否命题是“若则”,所以A错。在定义上并不是单调递增函数,所以B错。不存在,C错。全称性命题的否定是特称性命题,D对,选D.二、填空题:本大题共6小题,每小题5分,共30分。11、(区间端点开闭均可)【解析】
由已知函数图象求得,进一步得到,再由五点作图的第二点求得,则得到函数的解析式,然后利用复合函数的单调性求出的单调增区间.【详解】由图可知,,则,.又,.则.由,,解得,.的单调增区间是.【点睛】本题主要考查由函数的部分图象求函数解析式以及复合函数单调区间的求法.12、【解析】由,两边同除以得,由余弦定理可得是锐角,,故答案为.13、3【解析】
将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.14、【解析】
选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.15、【解析】
根据正弦定理即可.【详解】因为,,;所以,由正弦定理可得【点睛】本题主要考查了正弦定理:,属于基础题.16、②④.【解析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】
(1)由,,得,进而得即可证明平面.(2)平面得,由,,得,进而证明平面,则平面平面【详解】证明:(1)因为,,所以,所以,因为平面,平面,所以平面.(2)因为平面,平面,所以.因为,,所以,又,所以平面.又平面,所以平面平面.【点睛】本题考查线面平行的判定,面面垂直的判定,考查空间想象及推理能力,熟记判定定理是关键,是基础题18、(1)证明见解析.(2).【解析】
(1)根据数列通项公式的特征,我们对,两边同时除以,得到,利用等差数列的定义,就可以证明出数列是等差数列;(2)求出数列的通项公式,利用裂项相消法,求出数列的前n项和.【详解】(1)的两边同除以,得,又,所以数列是首项为4,公差为2的等差数列.(2)由(1)得,即,故,所以【点睛】本题考查了证明等差数列的方法以及用裂项相消法求数列前和.已知,都是等差数列,那么数列的前和就可以用裂项相消法来求解.19、(Ⅰ)或(Ⅱ)【解析】
(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【点睛】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1);(2)【解析】
(1)利用平方关系、诱导公式以及诱导公式即可求解;(2)利用辅助角公式以及二倍角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市政道路施工管理合同
- 年级学生动员讲话5篇
- 2024年广告物料特许经营合同
- 招标投标项目监督受贿罪案例
- 矿业公司防盗门安装合同
- 西安市二手房公积金贷款合同
- 节能环保工程师聘用合同
- 环保组织年休假安排策略
- 摄影器材租赁合同文本
- 财务制度建设与优化指导
- 《婴幼儿行为观察、记录与评价》习题库 (项目三) 0 ~ 3 岁婴幼儿语言发展观察、记录与评价
- 英语漫谈胶东海洋文化知到章节答案智慧树2023年威海海洋职业学院
- 环保产品管理规范
- 幼儿园:我中奖了(实验版)
- 赵学慧-老年社会工作理论与实务-教案
- 《世界主要海峡》
- 住院医师规范化培训师资培训
- 中央企业商业秘密安全保护技术指引2015版
- 螺旋果蔬榨汁机的设计
- 《脊柱整脊方法》
- 会计与财务管理专业英语智慧树知到答案章节测试2023年哈尔滨商业大学
评论
0/150
提交评论