版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省临夏州临夏中学高一下数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一位妈妈记录了孩子6至9岁的身高(单位:cm),所得数据如下表:年龄(岁)6789身高(cm)118126136144由散点图可知,身高与年龄之间的线性回归方程为,预测该孩子10岁时的身高为A.154 B.153 C.152 D.1512.已知函数,则在上的单调递增区间是()A. B. C. D.3.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则4.已知,,,,则()A. B. C.或 D.或5.已知之间的几组数据如下表:
1
2
3
4
5
6
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.6.如图,已知边长为的正三角形内接于圆,为边中点,为边中点,则为()A. B. C. D.7.已知一扇形的周长为,圆心角为,则该扇形的面积为()A. B. C. D.8.某公司的广告费支出与销售额(单位:万元)之间有下列对应数据:已知对呈线性相关关系,且回归方程为,工作人员不慎将表格中的第一个数据遗失,该数据为()A.28 B.30 C.32 D.359.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.10.已知数列的通项公式,前项和为,则关于数列、的极限,下面判断正确的是()A.数列的极限不存在,的极限存在B.数列的极限存在,的极限不存在C.数列、的极限均存在,但极限值不相等D.数列、的极限均存在,且极限值相等二、填空题:本大题共6小题,每小题5分,共30分。11.已知中,,则面积的最大值为_____12.若函数的图象过点,则___________.13.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.14.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.15.已知,则______.16.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的定义域;(2)判断的奇偶性并予以证;;(3)求使>0成立的x的取值范围.18.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.19.已知,,,求.20.底面半径为3,高为的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).(1)设正四棱柱的底面边长为,试将棱柱的高表示成的函数;(2)当取何值时,此正四棱柱的表面积最大,并求出最大值.21.已知定义域为的函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)判断函数的单调性,并用定义加以证明.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:根据题意,由表格可知,身高y与年龄x之间的线性回归直线方程为,那么可知回归方程必定过样本中心点,即为(7,131)代入可知,=65,预测该学生10岁时的身高,将x=10代入方程中,即可知为153,故可知答案为B考点:线性回归直线方程点评:主要是考查了线性回归直线方程的回归系数的运用,属于基础题.2、C【解析】
先令,则可求得的单调区间,再根据,对赋值进而限定范围即可【详解】由题,令,则,当时,在上单调递增,则当时,的单调增区间为,故选:C【点睛】本题考查正弦型函数的单调区间,属于基础题3、D【解析】
根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.4、B【解析】
先根据角的范围及平方关系求出和,然后可算出,进而可求出【详解】因为,,,所以,,所以,所以因为,所以故选:B【点睛】在由三角函数的值求角时,应根据角的范围选择合适的三角函数,以免产生多的解.5、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′6、B【解析】
如图,是直角三角形,是等边三角形,,,则与的夹角也是30°,∴,又,∴.故选B.【点睛】本题考查平面向量的数量积,解题时可通过平面几何知识求得向量的模,向量之间的夹角,这可简化运算.7、C【解析】
根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解.【详解】设扇形的弧长为,半径为,扇形的圆心角的弧度数是.
则由题意可得:.
可得:,解得:,.可得:故选:C【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.8、B【解析】
由回归方程经过样本中心点,求得样本平均数后代入回归方程即可求得第一组的数值.【详解】设第一组数据为,则,,根据回归方程经过样本中心点,代入回归方程,可得,解得,故选:B.【点睛】本题考查了回归方程的性质及简单应用,属于基础题.9、D【解析】
由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【点睛】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.10、D【解析】
分别考虑与的极限,然后作比较.【详解】因为,又,所以数列、的极限均存在,且极限值相等,故选D.【点睛】本题考查数列的极限的是否存在的判断以及计算,难度一般.注意求解的极限时,若是分段数列求和的形式,一定要将多段数列均考虑到.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设,则,根据面积公式得,由余弦定理求得代入化简,由三角形三边关系求得,由二次函数的性质求得取得最大值.【详解】解:设,则,根据面积公式得,由余弦定理可得,可得:,由三角形三边关系有:,且,解得:,故当时,取得最大值,故答案为:.【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.12、【解析】
由过点,求得a,代入,令,即可得到本题答案【详解】因为的图象过点,所以,所以,故.故答案为:-5【点睛】本题主要考查函数的解析式及利用解析式求值.13、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.14、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)15、【解析】
由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】由题意得出.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.16、【解析】
由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)奇函数,证明见解析;(3)见解析【解析】
(1)解不等式即得函数的定义域;(2)利用奇偶性的定义判断函数的奇偶性并证明;(3)对a分类讨论,利用对数函数的单调性解不等式.【详解】(1)由题得,所以,所以函数的定义域为;(2)函数的定义域为,所以函数的定义域关于原点对称,所以,所以函数f(x)为奇函数.(3)由题得,当a>1时,所以,因为函数的定义域为,所以;当0<a<1时,所以.【点睛】本题主要考查对数函数的定义域的求法,考查函数奇偶性的判断和证明,考查对数函数的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.19、11【解析】
根据题设条件,结合三角数的基本关系式,分别求得,和,再利用两角和的正切的公式,进行化简、运算,即可求解.【详解】由,由,可得又由,所以,由,得,可得,所以,即.【点睛】本题主要考查了两角和与差的正切函数的化简、求值问题,其中解答中熟记两角和与差的正切公式,准确运算是解答的关键,着重考查了推理与运算能力,试题有一定的难度,属于中档试题.20、(1);(2)正四棱柱的底面边长为时,正四棱柱的表面积最大值为48.【解析】试题分析:(1)根据比例关系式求出关于的解析式即可;(2)设该正四棱柱的表面积为,得到关系式,根据二次函数的性质求出的最大值即可.试题解析:(1)根据相似性可得:,解得:;(2)设该正四棱柱的表面积为.则有关系式,因为,所以当时,,故当正四棱柱的底面边长为时,正四棱柱的表面积最大值为.点睛:本题考查了数形结合思想,考查二次函数的性质以及求函数的最值问题,是一道中档题;该题中的难点在于必须注意圆锥轴截面图时,三角形内的矩形的宽为正四棱柱的底面对角线的长度,除了二次函数求最值以外还有基本不等式法、转化法:如求的最小值,那么可以看成是数轴上的点到和的距离之和,易知最小值为2、求导法等.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年消防设施检测与维保服务合同5篇
- 2025年度安置房质量保证合同书3篇
- 2025年水泥制品环保技术转移合同3篇
- 2025年度高空坠落防护HSE施工安全协议3篇
- 二零二五年房产销售代理与广告宣传协议3篇
- 二零二五年鲜活水产品运输与质量监管协议3篇
- 2025年度免租金停车场租赁合同模板
- 2025版棋牌室三方合作协议-创新管理与行业规范4篇
- 2025年污水处理站污水处理设施设备租赁与维修合同3篇
- 2025年度留学签证担保与资金证明服务合同3篇
- 公司组织架构图(可编辑模版)
- 1汽轮机跳闸事故演练
- 陕西省铜川市各县区乡镇行政村村庄村名居民村民委员会明细
- 礼品(礼金)上交登记台账
- 普通高中英语课程标准词汇表
- 北师大版七年级数学上册教案(全册完整版)教学设计含教学反思
- 2023高中物理步步高大一轮 第五章 第1讲 万有引力定律及应用
- 青少年软件编程(Scratch)练习题及答案
- 浙江省公务员考试面试真题答案及解析精选
- 系统性红斑狼疮-第九版内科学
- 全统定额工程量计算规则1994
评论
0/150
提交评论