甘肃省武威市民勤一中2025届数学高一下期末复习检测模拟试题含解析_第1页
甘肃省武威市民勤一中2025届数学高一下期末复习检测模拟试题含解析_第2页
甘肃省武威市民勤一中2025届数学高一下期末复习检测模拟试题含解析_第3页
甘肃省武威市民勤一中2025届数学高一下期末复习检测模拟试题含解析_第4页
甘肃省武威市民勤一中2025届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省武威市民勤一中2025届数学高一下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两个等差数列,的前项和分别为,,若对任意的正整数,都有,则等于()A.1 B. C. D.2.在平面直角坐标系中,圆:,圆:,点,动点,分别在圆和圆上,且,为线段的中点,则的最小值为A.1 B.2 C.3 D.43.已知圆的方程为,则圆心坐标为()A. B. C. D.4.已知向量、的夹角为,,,则()A. B. C. D.5.已知角的终边经过点,则A. B. C. D.6.奇函数在上单调递减,且,则不等式的解集是().A. B.C. D.7.下列两个变量之间的关系不是函数关系的是()A.出租车车费与出租车行驶的里程B.商品房销售总价与商品房建筑面积C.铁块的体积与铁块的质量D.人的身高与体重8.执行如图所示的程序框图,若输人的n值为2019,则S=A.-1 B.-12 C.19.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差10.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为_____.12.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______13.设是等差数列的前项和,若,,则公差(___).14.在梯形中,,,设,,则__________(用向量表示).15.将函数的图象向左平移个单位长度,得到函数的图象,则__________.16.已知等差数列满足,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.18.已知数列,,满足,,,.(1)设,求数列的通项公式;(2)设,求数列,的前n项和.19.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.20.设全集为,集合,集合.(Ⅰ)求;(Ⅱ)若,求实数的取值范围.21.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用等差数列的性质将化为同底的,再化简,将分子分母配凑成前n项和的形式,再利用题干条件,计算。【详解】∵等差数列,的前项和分别为,,对任意的正整数,都有,∴.故选B.【点睛】本题考查等差数列的性质的应用,属于中档题。2、A【解析】

由得,根据向量的运算和两点间的距离公式,求得点的轨迹方程,再利用点与圆的位置关系,即可求解的最小值,得到答案.【详解】设,,,由得,即,由题意可知,MN为Rt△AMB斜边上的中线,所以,则又由,则,可得,化简得,∴点的轨迹是以为圆心、半径等于的圆C3,∵M在圆C3内,∴MN的最小值即是半径减去M到圆心的距离,即,故选A.【点睛】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.3、C【解析】试题分析:的方程变形为,圆心为考点:圆的方程4、B【解析】

利用平面向量数量积和定义计算出,可得出结果.【详解】向量、的夹角为,,,则.故选:B.【点睛】本题考查利用平面向量的数量积来计算平面向量的模,在计算时,一般将模进行平方,利用平面向量数量积的定义和运算律进行计算,考查计算能力,属于中等题.5、A【解析】

根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.6、A【解析】

因为函数式奇函数,在上单调递减,根据奇函数的性质得到在上函数仍是减函数,再根据可画出函数在上的图像,根据对称性画出在上的图像.根据图像得到的解集是:.故选A.7、D【解析】

根据函数的概念来进行判断。【详解】对于A选项,出租车车费实行分段收费,与出租车行驶里程成分段函数关系;对于B选项,商品房的销售总价等于商品房单位面积售价乘以商品房建筑面积,商品房销售总价与商品房建筑面积之间是一次函数关系;对于C选项,铁块的质量等于铁块的密度乘以铁块的体积,铁块的体积与铁块的质量是一次函数关系;对于D选项,有些人又高又瘦,有些人又矮又胖,人的身高与体重之间没有必然联系,因人而异,D选项中两个变量之间的关系不是函数关系。故选:D。【点睛】本题考查函数概念的理解,充分理解两个变量之间是“一对一”或“多对一”的形式,考查学生对这些概念的理解,属于基础题。8、B【解析】

根据程序框图可知,当k=2019时结束计算,此时S=cos【详解】计算过程如下表所示:周期为6n2019k12…20182019S12-1…-k<n是是是是否故选B.【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.9、A【解析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.10、D【解析】

先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据的定义把带入即可。【详解】∵∴∵∴①∴②①-②得∴故答案为:【点睛】本题主要考查了新定义题,解新定义题首先需要读懂新定义,其次再根据题目的条件带入新定义即可,属于中等题。12、6【解析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样13、【解析】

根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,,即,又,两式相减得,.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.14、【解析】

根据向量减法运算得结果.【详解】利用向量的三角形法则,可得,,又,,则,.故答案为.【点睛】本题考查向量表示,考查基本化解能力15、【解析】

先利用辅助角公式将函数的解析式化简,根据三角函数的变化规律求出函数的解析式,即可计算出的值.【详解】,由题意可得,因此,,故答案为.【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为(或)的形式,其次要注意左加右减指的是在自变量上进行加减,考查计算能力,属于中等题.16、【解析】

由等差数列的性质计算.【详解】∵是等差数列,∴,∴.故答案为:1.【点睛】本题考查等差数列的性质,属于基础题.等差数列的性质如下:在等差数列中,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.【详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【点睛】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.18、(1)(2)【解析】

(1)由数列的递推公式得到和的关系式,进而推导出满足的关系式,进而求得数列的通项公式;(2)的通项公式是由等差数列的项乘以等比数列的项,利用乘公比错位相减法,即可求解数列的前n项和.【详解】(1)由题意,知,则,即,又由,所以,所以,所以,,,,.(2)由(1)知:,,,两式相减得:.【点睛】本题主要考查数列的递推公式的应用、以及“错位相减法”求和,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的逻辑思维能力及基本计算能力等.19、(1),,;(2)证明见详解,,.【解析】

(1)根据递推公式,赋值求解即可;(2)利用定义,求证为定值即可,由数列通项公式即可求得和.【详解】(1)由条件可得,将代入得,,而,所以.将代入得,所以.从而,,.(2)由条件可得,即,,又,所以是首项为1,公比为3的等比数列,.因为,所以.【点睛】本题考查利用递推关系求数列某项的值,以及利用数列定义证明等比数列,及求通项公式,是数列综合基础题.20、(Ⅰ)(Ⅱ)【解析】

(1)化简集合,按并集的定义,即可求解;(2)得,结合数轴,确定集合端点位置,即可求解.【详解】解:(Ⅰ)集合,集合,∴;(Ⅱ)由,且,∴,由题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论