




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省河西五市2025届高一下数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为(
)A. B. C. D.2.棱长为2的正四面体的表面积是()A. B.4 C. D.163.已知两点,若点是圆上的动点,则面积的最大值为()A.13 B.3 C. D.4.在中,若,,,则角的大小为()A.30° B.45°或135° C.60° D.135°5.若向量与向量不相等,则与一定()A.不共线 B.长度不相等 C.不都是单位向量 D.不都是零向量6.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.7.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-8.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或9.直线的倾斜角是()A. B. C. D.10.在中,分别是角的对边,,则角为()A. B. C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在直四棱柱中,,,,分别为的中点,平面平面.给出以下几个说法:①;②直线与的夹角为;③与平面所成的角为;④平面内存在直线与平行.其中正确命题的序号是__________.12.__________.13.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.14.对于数列满足:,其前项和为记满足条件的所有数列中,的最大值为,最小值为,则___________15.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.16.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.234564671013三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知分别是数列的前项和,且.(1)求数列与的通项公式;(2)求数列的前项和.18.设数列的前项和为,若,且成等差数列.(1)求数列的通项公式;(2)若的,求的最大值.19.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.20.已知等差数列满足,.(1)求的通项公式;(2)各项均为正数的等比数列中,,,求的前项和.21.已知函数(1)求函数的最小正周期;(2)若,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
画出图形,由已知条件便知P点在以BD,BP为邻边的平行四边形内,从而所求面积为2倍的△AOB的面积,从而需求S△AOB:由余弦定理可以求出AB的长为5,根据O为△ABC的内心,从而O到△ABC三边的距离相等,从而,由面积公式可以求出△ABC的面积,从而求出△AOB的面积,这样2S△AOB便是所求的面积.【详解】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,∴动点P的轨迹所覆盖图形的面积为2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O为△ABC的内心;所以内切圆半径r=,所以∴==;∴动点P的轨迹所覆盖图形的面积为.故答案为:A.【点睛】本题主要考查考查向量加法的平行四边形法则,向量数乘的几何意义,余弦定理,以及三角形内心的定义,三角形的面积公式.意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是找到P点所覆盖的区域.2、C【解析】
根据题意求出一个面的面积,然后乘以4即可得到正四面体的表面积.【详解】每个面的面积为,∴正四面体的表面积为.【点睛】本题考查正四面体的表面积,正四面体四个面均为正三角形.3、C【解析】
先求出直线方程,然后计算出圆心到直线的距离,根据面积的最大时,以及高最大的条件,可得结果.【详解】由,利用直线的截距式所以直线方程为:即由圆,即所以圆心为,半径为则圆心到直线的距离为要使面积的最大,则圆上的点到最大距离为所以面积的最大值为故选:C【点睛】本题考查圆与直线的几何关系以及点到直线的距离,属基础题.4、B【解析】
利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.5、D【解析】
由方向相同且模相等的向量为相等向量,再逐一判断即可得解.【详解】解:向量与向量不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A、B、C错误,D正确.故选:D.【点睛】本题考查了相等向量的定义,属基础题.6、A【解析】
根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.7、D【解析】
利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【详解】依题意可知,所以,故选D.【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.8、D【解析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.9、B【解析】
先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.10、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③.【解析】
利用线面平行的性质定理可判断①;利用平行线的性质可得直线与的夹角等于直线与所成的角,在中即可判断②;与平面所成的角即为与平面所成的角可判断③;根据直线与平面的位置关系可判断④;【详解】对于①,由,平面平面,则,又,所以,故①正确;对于②,连接,由,即直线与的夹角等于直线与所成的角,在中,,显然直线与的夹角不为,故②不正确;对于③,与平面所成的角即为与平面所成的角,根据三棱柱为直棱柱可知为与平面所成的角,在梯形中,,,,可解得与平面所成的角为,故③正确;对于④,由于与平面相交,故平面内不存在与平行的直线.故答案为:①③【点睛】本题是一道立体几何题目,考查了线面平行的性质定理,求线面角以及直线与平面之间的位置关系,属于中档题.12、【解析】
在分式的分子和分母上同时除以,然后利用极限的性质来进行计算.【详解】,故答案为:.【点睛】本题考查数列极限的计算,解题时要熟悉一些常见的极限,并充分利用极限的性质来进行计算,考查计算能力,属于基础题.13、【解析】
试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.14、1【解析】
由,,,,,分别令,3,4,5,求得的前5项,观察得到最小值,,计算即可得到的值.【详解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.综上可得的最大值,最小值为,则.故答案为:1.【点睛】本题考查数列的和的最值,注意运用元素与集合的关系,运用列举法,考查判断能力和运算能力,属于中档题.15、【解析】
由题意得,==﹣=,即可求的最小值.【详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【点睛】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.16、21.2【解析】
计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【点睛】本题主要考查回归方程的相关计算,难度很小.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2)【解析】
(1)分别求出和时的,,再检验即可.(2)利用错位相减法即可求出数列的前项和【详解】(1)当时,,当时,.检验:当时,,所以.因为,所以.当时,,即,当时,整理得到:.所以数列是以首项为,公差为的等差数列.所以,即.(2)…………①,……②,①②得:……,,.【点睛】本题第一问考查由数列前项和求数列的通项公式,第二问考查数列求和中的错位相减法,属于难题.18、(1);(2)6.【解析】
(1)根据已知条件,结合,得到,再由已知条件求得,即可求得等比数列的通项公式;(2)根据(1)中的结果化简得到,由此结合已知条件,即可求解.【详解】(1)由已知,所以,即,从而,,又因为成等差数列,即,所以,解得,所以数列是首项为2,公比为2的等比数列,故;(2)因为,所以,即,所以,所以,所以的最大值为6.【点睛】本题主要考查了等比数列的通项公式及前n项和公式的应用,以及数列的与关系式的应用,其中解答中数列与关系式和等比数列的通项公式、前n项和公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.19、(1)(2)【解析】
(1)是关于m的一次函数,计算得到答案.(2)易知,讨论和两种情况计算得到答案.【详解】(1)对任意实数,恒成立,即对任意实数恒成立,是关于m的一次函数,,解得或,所以实数x的取值范围是.(2)存在,使得成立,即,显然.(i)当时,要使成立,即需成立,即需成立.,(当且仅当时等号成立),,.(ii)当时,要使成立,即需成立,即需成立,,(当且仅当时等号成立),.综上得实数m的取值范围是.【点睛】本题考查了恒成立问题和存在性问题,意在考查学生的综合应用能力.20、(1);(2).【解析】试题分析:(1)求{an}的通项公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通项公式;(2)设各项均为正数的等比数列的公比为q(q>0),利用等比数列的通项公式可求首项及公比q,代入等比数列的前n项和公式可求Tn.试题解析:(1)设等差数列{an}的公差为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国投币洗衣机行业市场深度分析及投资规划研究报告
- 2025年中国被动锭轴行业市场发展前景及发展趋势与投资战略研究报告
- 2025年金属废料和碎屑项目提案报告范文
- 2025年中国幼儿园露天游乐设备市场研究报告
- 2025年中国桌面虚拟化市场运营态势分析及投资前景预测报告
- 中国耐热钢线材行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年中国甜菜行业市场调研及未来发展趋势预测报告
- 2025-2030黄酒行业风险投资发展分析及投资融资策略研究报告
- 2025-2030高压氧舱行业发展分析及投资战略研究报告
- 2025-2030马桶行业风险投资发展分析及投资融资策略研究报告
- 病历书写基本规范测试题(题库 )附答案
- 品质提升计划改善报告课件
- 第五课《山谷回声真好听》第二课时(教案)湘艺版音乐一年级下册
- 财务报告编制总结
- 初中九年级化学酸碱盐练习题
- 员工反腐败与合规培训制度
- 中国绝经管理与绝经激素治疗指南(2023版)解读
- 《跟上兔子》绘本五年级第1季A-Magic-Card
- NB∕T 47020~47027-2012 压力容器法兰
- 在线网课知慧《贵州省情(贵州理工学院)》单元测试考核答案
- MOOC 概率统计-西南石油大学 中国大学慕课答案
评论
0/150
提交评论