版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省福州八中高一数学第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列且是首项为2,公差为1的等差数列,若数列是递增数列,且满足,则实数a的取值范围是()A. B.C. D.2.已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A.8 B.6 C.4 D.163.已知,且,则()A. B. C. D.4.某几何体的三视图如下图所示(单位:cm)则该几何体的表面积(单位:)是()A. B. C. D.5.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为,第2小组的频数为12,则抽取的学生总人数是()A.24 B.48 C.56 D.646.若且则的值是().A. B. C. D.7.记Sn为等差数列{an}的前A.an=2n-5 B.an=3n-108.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是(),为预测人口数,为初期人口数,为预测期内年增长率,为预测期间隔年数.如果在某一时期有,那么在这期间人口数A.呈下降趋势 B.呈上升趋势 C.摆动变化 D.不变9.函数在上的图像大致为()A. B.C. D.10.电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性()A.都相等,且为 B.都相等,且为C.均不相等 D.不全相等二、填空题:本大题共6小题,每小题5分,共30分。11.若复数满足(为虚数单位),则__________.12.若为锐角,,则__________.13.已知,若直线与直线垂直,则的最小值为_____14.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.15.方程的解=__________.16.已知正实数x,y满足2x+y=2,则xy的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知f(α)=,其中α≠kπ(k∈Z).(1)化简f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.18.如图,四棱锥中,底面,,,点在线段上,且.(1)求证:平面;(2)若,,,求四棱锥的体积;19.在中,角A,B,C,的对应边分别为,且.(Ⅰ)求角B的大小;(Ⅱ)若的面积为,,D为AC的中点,求BD的长.20.已知函数f(x)=x2(1)写出函数g(x)的解析式;(2)若直线y=ax+1与曲线y=g(x)有三个不同的交点,求a的取值范围;(3)若直线y=ax+b与曲线y=f(x)在x∈[-2,1]内有交点,求(a-1)221.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等差数列和等比数列的定义可确定是以为首项,为公比的等比数列,根据等比数列通项公式,进而求得;由数列的单调性可知;分别在和两种情况下讨论可得的取值范围.【详解】由题意得:,,是以为首项,为公比的等比数列为递增数列,即①当时,,,即只需即可满足②当时,,,即只需即可满足综上所述:实数的取值范围为故选:【点睛】本题考查根据数列的单调性求解参数范围的问题,涉及到等差和等比数列定义的应用、等比数列通项公式的求解、对数运算法则的应用等知识;解题关键是能够根据单调性得到关于变量和的关系式,进而通过分离变量的方式将问题转化为变量与关于的式子的最值的大小关系问题.2、A【解析】
直接利用扇形的面积公式求解.【详解】扇形的弧长l=8,半径r=2,由扇形的面积公式可知,该扇形的面积S=1故选A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.3、D【解析】
首先根据,求得,结合角的范围,利用平方关系,求得,利用题的条件,求得,之后将角进行配凑,使得,利用正弦的和角公式求得结果.【详解】因为,所以,因为,所以.因为,,所以,所以,故选D.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.4、C【解析】
通过三视图的观察可得到该几何体是由一个圆锥加一个圆柱得到的,表面积由一个圆锥的表面积和一个圆柱的侧面积组成【详解】圆柱的侧面积为,圆锥的表面积为,其中,,。选C【点睛】几何体的表面积一定要看清楚哪些面存在,哪些面不存在5、B【解析】
根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解.【详解】由直方图可知,从左到右的前3个小组的频率之和为,又前3个小组的频率之比为,所以第二组的频率为,所以学生总数,故选B.【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.6、C【解析】由题设,又,则,所以,,应选答案C.点睛:角変换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.7、A【解析】
等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(-7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.8、A【解析】
可以通过与之间的大小关系进行判断.【详解】当时,,所以,呈下降趋势.【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.9、A【解析】
利用函数的奇偶性和函数图像上的特殊点,对选项进行排除,由此得出正确选项.【详解】由于,所以函数为奇函数,图像关于原点对称,排除C选项.由于,所以排除D选项.由于,所以排除B选项.故选:A.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性、特殊点,属于基础题.10、A【解析】
根据随机抽样等可能抽取的性质即可求解.【详解】由随机抽样等可能抽取,可知每个个体被抽取的可能性相等,故抽取的概率为.故选:A【点睛】本题考查了随机抽样的特点,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:由复数的除法运算可得解.详解:由,得.故答案为:.点睛:本题考查了复数的除法运算,属于基础题.12、【解析】因为为锐角,,所以,.13、8【解析】
两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.14、5【解析】
根据程序框图依次计算出、、后即可得解.【详解】由程序框图可知,;,;,.所以.故答案为:.【点睛】本题考查了程序框图的应用,属于基础题.15、-1【解析】分析:由对数方程,转化为指数方程,解方程即可.详解:由log2(1﹣2x)=﹣1可得(1﹣2x)=,解方程可求可得,x=﹣1故答案为:﹣1点睛:本题主要考查了对数方程的求解,解题中要善于利用对数与指数的转化,属于基础题.16、【解析】
由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)直接利用三角函数的诱导公式,化简运算,即可求解;(2)由,得,进一步求得,得到sin2与cos2,再由sin(2+)展开两角和的正弦求解.【详解】(1)由题意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【点睛】本题主要考查了三角函数的化简求值,及诱导公式及两角差的正弦公式的应用,其中解答中熟记三家函数的恒等变换的公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)证明见解析(2)【解析】
(1)根据底面证得,证得,由此证得平面.(2)利用锥体体积公式,计算出所求锥体体积.【详解】(1)证明:底面,平面,,,,,又,平面,平面,平面.(2),,,∴四边形是矩形,,,又,,,即,.【点睛】本小题主要考查线面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于基础题.19、(I);(II)【解析】
(I)由正弦定理得,展开结合两角和的正弦整理求解;(Ⅱ)由面积得,利用平方求解即可【详解】(I),由正弦定理得整理得,则,,.(II),,两边平方得【点睛】本题考查正弦定理及两角和的正弦,三角形内角和定理,考查向量的数量积及模长,准确计算是关键,是中档题20、(1)g(x)=0,-x2【解析】
(1)先分类讨论求出|f(x)|的解析式,即得函数g(x)的解析式;(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x⩽-2或x⩾1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1,y=-x2-x+2,-2<x<1,消去y得x2+(a+1)x-1=0.令φ(x)=x2+(a+1)x-1,写出a应满足条件解得;(3)由方程组y=ax+b,y=x2+x-2,消去y得x2+(1-a)x-2-b=0.由题意知方程在[-2,1]内至少有一个实根,设两根为x【详解】(1)当f(x)=x2+x-2≥0,得x≥1或x≤-2当f(x)=x2+x-2<0,得∴g(x)=(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x≤-2或x≥1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1y=-x2-x+2,-2<x<1,消去令φ(x)=x2+(a+1)x-1a≠0Δ=解得-1<a<0或0<a<12,所以a(3)由方程组y=ax+by=x2+x-2,消去由题意知方程在[-2,1]内至少有一个实根,设两根为x1不妨设x1∈[-2,1],x2∈R∴(a-1)==≥2×1=2当且仅当x1所以(a-1)2+(b+3)【点睛】本题考查了函数与方程,涉及了分段函数、零点、韦达定理等内容,综合性较强,属于难题.21、(1)见解析(2)【解析】
(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根据线面角的定义作出线面角,在直角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具销售合同范本
- 2024房产中介代理合同版
- 手机应用开发委托合同格式
- 员工借款协议书样式
- 工地简易用工合同范本参考
- 2024年建筑公司财务分析与优化外包合同
- 新加坡卫星电视节目合作委托协议书
- 2024年度BGL气化炉耐火材料采购及安装合同
- 施工合同条款合同违约及终止
- 2024云计算服务合同-提供高效计算资源
- DB31T 1295-2021 立体花坛技术规程
- 部编版《道德与法治》五年级上册第10课《传统美德 源远流长》优质课件
- 原发性骨髓纤维化课件
- 消防工程施工验收单样板
- 中央空调人员培训内容表
- 发现生活中的美-完整版PPT
- 小学道德与法治人教三年级上册第三单元安全护我成长-《遭遇陌生人》教案
- CAMDS操作方法及使用技巧
- 平狄克《微观经济学》(第8版)笔记和课后习题详解
- 最优化理论与算法课程教学大纲
- 2022年湖北省武汉市江岸区育才第二小学六上期中数学试卷
评论
0/150
提交评论