版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省八校2025届高一下数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角的对边分别是,已知,则()A. B. C. D.或2.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则3.已知分别为的三边长,且,则=()A. B. C. D.34.已知向量,满足,,,则与的夹角为()A. B. C. D.5.若,直线的倾斜角等于()A. B. C. D.6.的周期为()A. B. C. D.7.在中,,,则的最小值是()A.2 B.4 C. D.128.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.9.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元10.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.12.已知角的终边经过点,则的值为__________.13.设等比数列的公比,前项和为,则.14.在等比数列中,,,则_____.15.若角的终边过点,则______.16.已知,,,的等比中项是1,且,,则的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足,.(1)求的通项公式;(2)各项均为正数的等比数列中,,,求的前项和.18.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.19.在锐角中,角,,的对边分别为,,,若.(1)求角;(2)若,则周长的取值范围.20.设数列为等比数列,且,,(1)求数列的通项公式:(2)设,数列的前项和,求证:.21.解关于x的不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由已知知,所以B<A=,由正弦定理得,==,所以,故选B考点:正弦定理2、D【解析】
A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.3、B【解析】
由已知直接利用正弦定理求解.【详解】在中,由A=45°,C=60°,c=3,由正弦定理得.故选B.【点睛】本题考查三角形的解法,考查正弦定理的应用,属于基础题.4、B【解析】
将变形解出夹角的余弦值,从而求出与的夹角.【详解】由得,即又因为,所以,所以,故选B.【点睛】本题考查向量的夹角,属于简单题.5、A【解析】
根据以及可求出直线的倾斜角.【详解】,,且直线的斜率为,因此,直线的倾斜角为.故选:A.【点睛】本题考查直线倾斜角的计算,要熟悉斜率与倾斜角之间的关系,还要根据倾斜角的取值范围来求解,考查计算能力,属于基础题.6、D【解析】
根据正弦型函数最小正周期的结论即可得到结果.【详解】函数的最小正周期故选:【点睛】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.7、C【解析】
根据,,得到,,平方计算得到最小值.【详解】故答案为C【点睛】本题考查了向量的模,向量运算,均值不等式,意在考查学生的计算能力.8、B【解析】
计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.9、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.10、B【解析】
利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
根据等积法可得∴12、【解析】按三角函数的定义,有.13、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.14、1【解析】
由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.15、-2【解析】
由正切函数定义计算.【详解】根据正切函数定义:.故答案为-2.【点睛】本题考查三角函数的定义,掌握三角函数定义是解题基础.16、4【解析】
,的等比中项是1,再用均值不等式得到答案.【详解】,的等比中项是1当时等号成立.故答案为4【点睛】本题考查了等比中项,均值不等式,意在考查学生的综合应用能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)求{an}的通项公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通项公式;(2)设各项均为正数的等比数列的公比为q(q>0),利用等比数列的通项公式可求首项及公比q,代入等比数列的前n项和公式可求Tn.试题解析:(1)设等差数列{an}的公差为d,则由已知得∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)设等比数列{bn}的公比为q,则由已知得q+q2=a4,∵a4=6∴解得:q=2或q=-3.∵等比数列{bn}的各项均为正数,∴q=2.∴{bn}的前n项和Tn===18、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由勾股定理可证得为直角三角形即可证得,由直棱柱可知面,可证得,根据线面垂直的判定定理可证得面,从而可得.(2)设与的交点为,连结,由中位线可证得,根据线面平行的判定定理可证得平面.试题解析:证明:(1)证明:,,为直角三角形且,即.又∵三棱柱为直棱柱,面,面,,,面,面,.(2)设与的交点为,连结,是的中点,是的中点,.面,面,平面.考点:1线线垂直,线面垂直;2线面平行.19、(1)(2)【解析】
(1)利用切化成弦和余弦定理对等式进行化简,得角的正弦值;(2)利用成正弦定理把边化成角,从而实现的周长用角B的三角函数进行表示,即周长,再根据锐角三角形中角,求得函数值域.【详解】(1)由,得到,又,所以.(2),,设周长为,由正弦定理知,由合分比定理知,即,,即.又因为为锐角三角形,所以.,周长.【点睛】对运动变化问题,首先要明确变化的量是什么?或者选定什么量为变量?然后,利用函数与方程思想,把所求的目标表示成关于变量的函数,再研究函数性质进行问题求解.20、(1)(2)详见解析【解析】
(1)将已知条件转化为等比数列的基本量和,得到的值,从而得到数列的通项;(2)根据题意写出,然后得到数列的通项,利用列项相消法进行求和,得到其前项和,然后进行证明.【详解】设等比数列的首项为,公比为,因为,所以,所以所以;(2),所以,所以.因为,所以.【点睛】本题考查等比数列的基本量计算,裂项相消法求数列的和,属于简单题.21、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024买卖房产合同样本
- 女装批量采购合同
- 医院劳动合同书2024年
- 房屋合同法律效力分析
- 2024年小区物业管理系统合同
- 2024年度XX房地产营销代理合同
- 工程代理加盟居间合同样本
- 旅游客运车辆包车合同
- 2024代理商分销合同探讨与研究
- 2024养猪场荒山租赁合同
- 十字相乘法解一元二次方程练习100题及答案
- 中外合作办学规划方案
- 厂房屋顶光伏分布式发电项目建议书
- 2024年人教版初一道德与法治上册期中考试卷(附答案)
- 2024年第九届“鹏程杯”六年级语文邀请赛试卷(复赛)
- 国开2024年《建筑结构#》形考作业1-4答案
- DL-T1475-2015电力安全工器具配置与存放技术要求
- 漏检分析改善措施
- 新制定《公平竞争审查条例》学习课件
- TD/T 1060-2021 自然资源分等定级通则(正式版)
- 完整加快发展新质生产力课件
评论
0/150
提交评论