版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鸡兔同笼教案10篇鸡兔同笼教案篇一【教学目标】1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。【重点难点】用假设法和列方程的方法解决“鸡兔同笼”问题。【教学指导】1、要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。2、要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。3、要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。4、要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。【知识结构】第1课时鸡兔同笼(1)【教学内容】教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。【教学目标】1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。【重点难点】用多种方法解决“鸡兔同笼”问题。【教学准备】课件、列表法的表格卡片。【情景导入】1、师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话是什么意思呢?抽生回答。2、这类题我们把它叫做什么问题好呢?板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢?【新课讲授】(一)出示情景,获取信息1、出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”2、我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点——鸡和兔都只有1个头;不同点——鸡只有2条腿,而兔有4条腿。(二)列表法1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?2、那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?3、现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:①随意猜,直到猜对为止;②从鸡的只数开始尝试,直到符合26条腿为止;③从兔的只数开始尝试,直到符合26条腿为止;④对半分开始尝试,不断调整,直到符合26条腿为止。4、我们把这种方法叫做列表法。(三)直观画图法1、师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲?2、生1:还可以用画图——先画好8个圆圈代表鸡和兔的8个头,再给每只动物先安上2条腿,这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。所以在这个笼子里鸡有3只,兔有5只。问:你们听懂他的方法吗?请同学们在练习本上画一画。3、生2:我也是用画图法——先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿,这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。师:画图的方法非常便于观察、非常容易理解。4、你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。5、是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。(四)思考交流你还能用什么办法来解决这个问题呢?学生讨论后交流。A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿?②与实际的腿数不符,腿的条数少算了多少条?③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿?④少算的10条腿是把多少只兔当成了鸡来算?⑤鸡的只数怎么算?B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)要用列方程的方法就必须找到等量关系式。通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)(五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗?【课堂作业】完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。【课堂小结】通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。【课后作业】1、完成教材第106页练习二十四第1~3题。2、完成练习册本课时的练习。《鸡兔同笼》教学设计篇二1.教材分析:鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,培养学生的逻辑推理能力,为学生的终身发展奠定基础。《数学用书》中说道:“数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。”因此,鸡兔同笼问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材的编排有以下特点:(1)、教材首先通过“鸡兔同笼”这一问题,激发学生解答我国古代著名数学问题的兴趣。(2)、注重体现解决“鸡兔同笼”问题的不同思路和方法。(3)、让学生进一步体会到这类问题在日常生活中的应用。2.学情分析:六年级的学生他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。教学目标:1.知识与技能目标:通过学习,让学生掌握用图示法、列方程法、假设法解决"鸡兔同笼"问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似"鸡兔同笼"的。问题。感受古代数学问题的趣味性和解法的巧妙性。2.过程与方法目标:学会在学习中进行尝试。比较。分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。3.情感与价值目标.了解我国古代数学研究成果,增强明族自豪感。教学重点:尝试用不同的方法解决"鸡兔同笼"问题。教学难点:在解决问题的过程中培养学生的逻辑推理能力。教具准备:圆形纸片、小棒若干小黑板图片教学过程:一、谜语激趣,导入新课1.出示谜语卡片。(目的是激发学生学习兴趣问题的欲望,同时引出课题)顶上红冠戴红红眼睛白白毛身披五彩衣长长耳朵短尾巴能测天亮时身披一件白皮袄呼得众人醒走起路来轻轻跳(猜一动物)(猜一动物)老师根据学生的回答,先后在黑板上出示鸡和兔的图片。2.板书课题:鸡兔同笼。3.用数学语言描述一下鸡和兔各有什么特征。(目的是为后面的教学做铺垫)(预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔子有四只脚。)二、合作讨论,探究新知1.出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?(小黑板)(“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此我第一次出示的尝试题把原题中的数据改小了,这样有利于激起学生的学习兴趣,能充分照顾到不同层次的学生,让学生主动参与进来。)2.从题目中你们能发现什么数学信息?(捕捉隐含信息)(目的是引导学生理解题意:鸡和兔共8只,鸡和兔共有26条腿,同时捕捉隐含信息:鸡有2条腿,兔有4条腿。)3.独立思考:(培养学生独立解决问题的能力。)4.小组讨论探究。(老师参与其中,启发、点拔,师生互动。)(针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平,采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。在师生互动中让每个学生都动口、动手、动脑,腾出足够的时空和自由度使学生成为课堂的主人,使每个学生的学习都能有体验、有收获、有感想。目的是激发学生的探索欲望,让学生在小组讨论交流中弄清“鸡兔同笼”问题的结构特征和解题策略,亲历多样化解题的过程,初步形成解决此类问题的一般性策略。)5.学生汇报探究的方法和结论。预设以下几种方法:(根据时间而讲解其中的二至三种方法)(这种设计有一定的伸缩性,教师可以灵活把握。)(1)用方程解解:设兔有X只,那么鸡有(8-X)只。4X+2(8-X)=2616+2X=262X=26-16X=58-5=3(只)即鸡有3只,兔有5只。引导学生口头检验(2)形象生动,讲解假设法①、假设全是鸡一共就有8×2=16条腿。实际有26条腿,这样笼子里就少了26-16=10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。每只兔少算两条腿,那把几只兔当成了鸡算就会少算10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算)10÷2=5就是兔的只数,8-5=3(只)鸡②、思考:假设笼子里都是兔该怎样求?同桌口头完成。小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)(3)列表法。出示图表:(小黑板)学生反馈填表过程,说明从中发现的规律。鸡兔同笼教案篇三学情分析:鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。教学目标:1、知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。教学重点:尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。教学难点:理解用假设法解决“鸡兔同笼”问题的算理。教学过程:一、以史激趣,导入新课:同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)二、独立探索,构建新知:(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?你从这道题中,找到了什么数学信息?(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)有了猜测的依据,还有谁想继续猜?(……)给老师一个机会,我猜鸡是1只,那兔有几只?(19只)怎么知道我猜得对不对?(通过计算来验证)(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。《鸡兔同笼》教学设计篇四教学目标:1、通过对日常生活中现象的观察和思考,发现一些特殊的规律。2、从不同角度分析,掌握列表解题的策略与方法。3、培养学生分析的能力,初步渗透假设的。数学思想。教学重难点:从不同角度分析,掌握列表解题的策略与方法。教具准备:多媒体课件教学过程:一、激趣导入二、开展活动,探究规律。三、利用规律,实题操作。四、练习五、课外延伸鸡兔同笼教学设计篇五教学目标:1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。教学重点:明确鸡兔同笼问题数量关系。教学难点:初步形成解决此类问题的一般性。教学过程一、历史激趣,导入新课(3分)导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)师:古代人对这样的题目有着自己独道的'见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题:鸡兔同笼)2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】二、合作探究,构建新知(15分)1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?2、先猜一猜,可能只有一种动物吗,为什么?学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。3、独立思考:(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。鸡兔可能各有多少只?你想怎样解决这个问题呢?找几名同学说一说解决的办法。同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。【设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。】4、学生独立完成,教师巡视。5、学生汇报:还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。鸡兔同笼教学设计篇六教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。3、在解决问题的过程中培养学生的逻辑推理能力。教学重点:理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。教学难点:理解用假设法的算理并能运用不同的方法解决实际问题。教学方法:1、采取直观形象的方式,让学生探讨不同的方法。2、适当把握教学要求。教学过程:一、历史激趣,导入新课今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的`学习热情。二、探究交流,尝试解决问题。1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。(出示)3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)鸡兔同笼教案篇七教学内容:教科书数学六年级上册P112-115。教学目标:1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。教学重点:让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。教学难点:理解假设法中各步的算理教具准备:多媒体课件教学过程:一、解读原题,直奔主题。1、谈话,激情导入师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(2)揭示课题(3)原题解读师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]二、合作探究,寻找策略。1、改变原题师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?(2)理解题意:从题中你获得哪些信息?让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。探索策略2、列表尝试法①猜一猜:笼子里可能有几只鸡?几只兔?②说一说:他猜的对吗?要怎么知道他猜的对不对?③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。④展示答题卡:我试了()次得出答案。鸡有()只,兔有()只。⑤反馈交流A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?B、取中或跳跃尝试,数一数试了几次?有什么秘诀?⑥小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]3、假设法①、学生独立尝试列式解答②、小组讨论,说一说用假设法解答的算理③、汇报反馈④、课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。A、假设笼子里都是鸡,一共有几只脚?条件告诉我们几只脚,这样就少了几只脚呢?为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?那么几只兔看成鸡一共少了10只脚呢?B、假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?那么几只鸡看成兔一共多了6只脚呢?⑤、让学生对照课件说一说算式表示的意义⑥、思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?4、方程解解:设兔有只,则鸡有只。也可以设:鸡为只,则兔有只。(略)师:在列方程解答时碰到什么困难?该如何解决?[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]5、梳理小结,比较优化。三、推广应用,建立模型。1、选择自己喜欢的方法解决《孙子算经》中的原题。2、解决生活中的“鸡兔同笼”的问题。(1)动物园中的问题。动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?(2)游乐园中的问题。有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?3、对比联系,建立模型。4、小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。5、让学生举出生活中类似的。“鸡兔同笼”问题。[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]四、引导阅读,课外延伸。1、阅读并思考课本114页的“阅读材料”。2、完成练习二十六的1—3题。[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]《鸡兔同笼》教学设计篇八【教学内容】教科书103-104页内容及相关练习。【教材分析】“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。解决这类问题的方法包括:列表法、假设法、方程法等。教材把这一问题安排在四年级,学生还没有学过方程,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力,体会假设法的一般性。在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。【学情分析】“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。“列表法”是学生比较容易接受的,也就是通过有序猜测和计算得出结论,“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。【教学建议】1、教学中要注意渗透化繁为简的思想。2、引导学生探索解决问题的策略和方法。3、介绍有关鸡兔同笼问题的“趣解”,既激发学习的兴趣,又可以拓宽学生的思路。【教学目标】1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、经历自主探究解决问题的过程,了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。3、了解“鸡兔同笼”问题解决的多种有趣方法,体验问题解决方法多样化。【教学重点】经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。【教学难点】理解掌握假设法,能运用假设法解决数学问题。【教学过程】一、情境导入。今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题,请看屏幕:(课件出示以下情境图)师:你能说说这道题是什么意思吗?(说明:雉指鸡)让学生说说题意,然后出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”问题。(板书课题)有的同学已经在计算了,说说看鸡有多少只?兔有多少只?【设计意图】结合课件呈现的情境图谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。二、新知探究。(一)感受化繁为简的必要性。刚才大家猜了好几组数据,但是我们验证后发现都不对,为什么这么多人都没有猜对呢?(数太大了)你们觉得什么情况下能够猜对?(数小一些)那咱们就换一道数小一些的。(课件出示例1)笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?(二)自主尝试解决问题。我们一起来看看在同一个笼子里的鸡和兔给我们带来了哪些数学信息?找到题中信息:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜测的结果对不对?(把鸡的腿和兔的腿加起来看是不是等于(把鸡的腿和兔的腿加起来看等不等于26)这回给你们一点时间,把你猜测的数据在练习本上列个表,算一算,想一想:你算的对吗?(出示表格)这回给你们一点时间,把你猜测的'数据在练习本上算一算,想一想:你算的对吗?(三)交流体会,掌握问题解决策略。1、经历列表法的形成过程。(1)经过同学们的研究,现在知道鸡和兔各有几只?都谁和他的结果一样?你们有把握这次猜对了吗?怎么验证一下?(2)说说你是怎样得出正确答案的?(引导学生说说解决问题的思路)预设学生思路:●从鸡8只,兔0只开始推算。●从鸡0只,兔8只开始推算。前两种情况可能做了充分预习,按照一定的顺序,列举出了所有情况,或者到得到正确答案为止。对这种有序思考的方法要给予肯定。●直接猜出鸡有3只,兔有5只,验证后发现脚数正好是26只。这种情况属于正好一下猜对了,教师提示不一定每次都能够猜得这么准。●从鸡有4只,兔有4只开始推算。这种情况猜测的次数比较少,对于数据比较大的时候适用。●有的同学还可能发现了每增加一只兔,减少一只鸡,脚就增加2只,这样就可以一下子算出需要增加几只兔,直接找到正确答案。这正是假设法的思路。如果有同学有这一发现,教师要及时引导学生表述准确,为后面的假设法学习做好铺垫。(3)小结收获。从刚才的列表情况看,你觉得怎样列表比较好?(4)运用列表法解决情境图中的鸡兔同笼问题。自主解决,交流方法并订正结果。如果没有出现上面的第五种思路,教师小结可以提出。小结:鸡兔的总只数不变,多一只兔子就会少一只鸡,增加两只脚;多一只鸡就会少一只兔子,减少两只脚。运用这一规律正好是我们解决这一问题的另一种方法。2、探究假设法。(1)问题预设:刚才大家找到了“鸡兔同笼”问题的解决办法,讨论中还发现了一种更简单的方法,如果运用这种推理方法,怎么解决呢?(2)引导学生交流:发现假设成都是鸡或者都是兔,计算起来会更简便。交流时重点让学生说说每一步的意思。先假设成都是鸡,着重说说推理的过程。同样,让学生说说,如果假设成都是兔,是什么情况?小结收获。(3)运用假设法解决情境图中的“鸡兔同笼”问题,再汇报交流。【设计意图】让学生在自主尝试中找到用列表法解决“鸡兔同笼”问题的方法,引导学生有序思考,组织学生有层次地汇报和交流,让学生在这一过程中体会到:根据表中总脚数与题中数据的差,来调整数据,对假设法的探究起到了铺垫作用,同时对假设法的理解也更加深刻。三、练习强化,深化认识。针对性练习,完成做一做第一题。独立完成,再集体交流订正。四、阅读资料,丰富认识。同学们,你们知道古人是怎样解决“鸡兔同笼”问题的吗?阅读105页的资料。古人真是很聪明啊!今人更了不起,又发现了很多关于“鸡兔同笼”问题的趣解,你们想了解吗?介绍几种。1、假设所有的鸡和兔子都训练有素,然后你拿着一个口哨,吹一下,所有动物收起一只脚,吹两下,收起两只脚,好了,现在鸡一屁股坐在地上了,小兔都“作揖”了,也就是还有两只脚站着,总脚数减去两倍的头的个数再除以二就是兔子的只数了。2、假如鸡的翅膀也着地,也有四只脚,那么总脚数就是总只数乘4,减去实际的脚数,就是翅膀的数,翅膀都是鸡的,再除以2,就是鸡的只数。五、谈话式小结。同学们,今天你有什么收获?每种方法都明白了吗?你最喜欢哪种方法?提示学生做题时要根据题目选择合适的方法来解决问题。鸡兔同笼教学设计篇九按照我对教材的理解,和学生心理特点学习能力的把握,对教学设计进行简单说明:一、我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。二、由于"鸡兔同笼"问题在人教版中是第一次出现,只有小部分学生可能在数奥书上见过,会做。大部分学生都是第一次遇到,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答"鸡兔同笼"问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。通过这两步的学习,大部分学生应该基本能利用假设法来解答"鸡兔同笼"问题。三、在本课的设计上我灵活的安排了教材,把书上“26只脚”改为了“26条腿”意思差不多,但便于学生在后面分析叙述,好与“几只兔”“几只鸡”区分。不然都是“只”,让学生听不明白。在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。四、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。教学重点:用假设法解决“鸡兔同笼”问题。教学具准备:课件。教学过程:一、历史激趣,导入新课导语:老师听说我们班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”(读成“zhì”),就是野鸡。)谁知道,这是一个什么问题?(鸡兔同笼问题)这节课我们就来研究中国历史上著名的数学趣题“鸡兔同笼”。(板书课题)【设计意图】这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。1、分析题意:这道题目是什么意思?(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子?)2、出示例题:贴出例题及插图:鸡兔同笼,上面看有35个头,下面看有94条腿,鸡兔各有多少只?(请一名同学读题)你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?同学们先来尝试猜测鸡、兔可能各有多少只?(找一两个同学猜测)过渡:看来这么大的数据,同学们尝试猜测有一定的难度,那我们把它化难为易,从简单入手找出规律,再来尝试猜测解决这个问题。二、化难为易,寻找规律1、如果鸡兔共5只,共有18条腿,尝试猜测一下鸡、兔可能各有多少只?2、鸡兔共5只不变,腿数变为16条,鸡兔各有多少只?你是怎样猜测出来的?3、鸡兔共5只不变,鸡、兔的只数还有其他情况吗?腿数是多少?请同学们借助表格1,整理一下我们的解题过程;头数鸡(只)兔(只)腿数514185231653214541124、(拿其中一名同学的表格在展示台展示)请同学们观察分析这些数据,看看有什么规律?(满足鸡兔共五只的条件;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?过渡:刚才我们运用列表的方法解决了这道简单的鸡兔同笼问题,并且在表格中发现了规律,那么你们能不能运用列表的方法以及刚才发现的规律来解决《孙子算经》中的鸡兔同笼问题?(板书:列表法)【设计意图】简单入手、化难为易发现规律,运用知识迁移,拓宽学生思路,留给学生思考的空间,在解决问题的过程中发现表格的用处,及其在表格中发现规律,为构建新知奠定基础。三、交流强趣构建新知1、学生独立完成,教师巡视2、在小组里交流一下你尝试猜测的过程(选出:逐一列表法;腿数少小幅度跳跃;腿数多大幅度跳跃;跳跃逐一相结合;取中列表)3、学生汇报:(1)请一个采用逐一列表法解决的同学汇报(假如有采用逐一列表法的)汇报讲出理由(你是依据什么确定第一组数据的,计算验证后发现了什么问题,腿数多或少说明什么?怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。你们认为这种方法有什么特点?(板书:逐一)小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;(2)请小幅度跳跃列表的同学汇报说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?问:你们觉得这种方法怎么样?(简便、快捷)(3)请大幅度跳跃列表同学汇报你是怎样想到把鸡或兔的只数调整的?(4)请大或小幅度调整与逐一相结合的汇报重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃)(5)请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)3、回顾与交流回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)你最喜欢那种列表方法?理由呢?同学们还有其他的方法解决这道题吗?直观画图法:大家明白了吗?你觉得这种解法怎么样?小结:画图的方法非常直观便于观察、非常容易理解。同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。【设计意图】在问题情境中探究解决问题的方法,给学生足够的空间经历数学知识的形成过程,体验猜测—验证—调整—再验证—再调整的过程,从而得到解决鸡兔同笼问题的一般方法策略:列表法。过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。四、方法应用,巩固新知过渡语:抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,请看题:迎奥运学校开展乒乓球比赛,有12个球案在进行单打和双打比赛,共有30人正在比赛,单打、双打球案各有几张?独立完成后学生汇报:你采用的是那种列表方法?为什么要选用这种列表方法?谁有不同的列表方法?就这道题而言你认为用哪种方法解决最好?【设计意图】学数学用数学,引领学生抓住数学的本质,学习鸡兔同笼问题并非单纯解决鸡兔同笼问题而是借助鸡兔同笼问题学习列表法。五、实践应用解决问题地震后要用大小卡车往灾区运29吨食品,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?尝试运用你喜欢的方法独立完成此题。学生汇报:你采用的是那种列表方法?为什么要选用这种列表方法?谁有不同的列表方法?1、(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牙根外露病因介绍
- 安全教育班会《校园安全及管理》课件图
- 水俣病病因介绍
- (高考英语作文炼句)第7篇译文老师笔记
- 开题报告:指向核心素养的中学化学深度学习教学评价研究
- 开题报告:新时代中国德育价值观变革的走向
- 开题报告:新建本科院校“学困生”精准学习指导机制与政策支持研究
- 《旋挖桩技术交底》课件
- 2024专业石材买卖协议样本版
- 《元旦晚会投影背景》课件
- 《音乐欣赏》课程标准
- 加固工程专项应急预案范本
- 医院专业技术人员岗位聘任工作实施方案职称聘用管理办法制度3篇
- 诗豪刘禹锡一生部编教材PPT
- 农网配电营业工(综合柜员)技能等级考试题库(全真题库)
- 国家开放大学《管理学基础》形考任务4参考答案
- 带式运输机传动理论和选择计算方法
- 工程质量保修证明书
- 设备通用日常点检表 - 盐雾试验机
- 骏派D60用户使用手册
- 施工工地放行条模板
评论
0/150
提交评论