版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东普宁华侨中学新高考冲刺数学模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则实数的大小关系为()A. B. C. D.2.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心3.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.4.若数列满足且,则使的的值为()A. B. C. D.5.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A. B. C. D.6.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.7.下列图形中,不是三棱柱展开图的是()A. B. C. D.8.已知函数,若曲线上始终存在两点,,使得,且的中点在轴上,则正实数的取值范围为()A. B. C. D.9.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有10.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(
)A. B. C. D.11.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,12.集合的子集的个数是()A.2 B.3 C.4 D.8二、填空题:本题共4小题,每小题5分,共20分。13.记等差数列和的前项和分别为和,若,则______.14.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.①2至3月份的收入的变化率与11至12月份的收入的变化率相同;②支出最高值与支出最低值的比是6:1;③第三季度平均收入为50万元;④利润最高的月份是2月份.15.设函数,则满足的的取值范围为________.16.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值.18.(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.19.(12分)如图,直三棱柱中,底面为等腰直角三角形,,,,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.20.(12分)已知,,,,证明:(1);(2).21.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面,,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.22.(10分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
将化成以为底的对数,即可判断的大小关系;由对数函数、指数函数的性质,可判断出与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.2、B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.3、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.4、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.5、D【解析】
由得,分别算出和的值,从而得到的值.【详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.【点睛】本小题主要考查对数运算,属于基础题.6、A【解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.7、C【解析】
根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.8、D【解析】
根据中点在轴上,设出两点的坐标,,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.9、B【解析】
根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.10、A【解析】=,当时时,单调递减,时,单调递增,且当,当,
当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.11、B【解析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.12、D【解析】
先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
结合等差数列的前项和公式,可得,求解即可.【详解】由题意,,,因为,所以.故答案为:.【点睛】本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.14、①②③【解析】
通过图片信息直接观察,计算,找出答案即可.【详解】对于①,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确.对于②,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确.对于③,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确.对于④,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是80﹣60=20万元,错误.故答案为①②③.【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目.15、【解析】
当时,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【详解】,当时,函数单调递增,当时,函数为常数,需满足,且,解得.故答案为:.【点睛】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.16、【解析】
设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即,因为,所以,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)利用极坐标和直角坐标的互化公式,即得解;(2)设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,可得点在以为圆心,为半径的圆上,所以的最大值为,即得解.【详解】(1)因为点在曲线上,为正三角形,所以点在曲线上.又因为点在曲线上,所以点的极坐标是,从而,点的极坐标是.(2)由(1)可知,点的直角坐标为,B的直角坐标为设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,有即点在以为圆心,为半径的圆上.,所以的最大值为.【点睛】本题考查了极坐标和参数方程综合,考查了极坐标和直角坐标互化,参数方程的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18、(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望.试题解析:(Ⅰ)根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(Ⅱ)由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3,,,,.∴的分布列为:1123∴.19、(1)(2)【解析】
(1)先证得,设与交于点,在中解直角三角形求得,由此求得的值.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)由题意,,设与交于点,在中,可求得,则,可求得,则(2)以为原点,方向为轴,方向为轴,方向为轴,建立空间直角坐标系.,,,,,易得平面的法向量为.,,易得平面的法向量为.设二面角为,由图可知为锐角,所以.即二面角的余弦值为.【点睛】本小题主要考查根据线面垂直求边长,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)证明见解析(2)证明见解析【解析】
(1)先由基本不等式可得,而,即得证;(2)首先推导出,再利用,展开即可得证.【详解】证明:(1),,,(当且仅当时取等号).(2),,,,,,,.【点睛】本题考查不等式的证明,考查基本不等式的运用,考查逻辑推理能力,属于中档题.21、(1)证明见解析;(2).【解析】
(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【详解】(1),,又,,,而、分别是、的中点,,故面,又且,故四边形是平行四边形,面,又,是面内的两条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临时租车合同协议书
- T-CISA 374-2024 抗震型耐大气腐蚀建筑结构用热轧钢板和钢带
- 《电机技术应用》课件 2.4.1 三相异步电动机的起动
- 中学学校三年发展规划(2023-2026)
- 《PCT在ICU的应用》课件
- 2023年金融担保服务项目筹资方案
- 《如何获得财富》课件
- 快递员模拟试题+参考答案
- 养老院老人生活照顾人员晋升制度
- 《如何组建创业团队》课件
- 3.1 细胞膜的结构和功能说课课件-高一上学期生物人教版必修1
- 2024年广东省高中学业水平合格性考试语文试卷真题(含答案解析)
- CJ/T 83-2016 水处理用斜管
- GB 1499.1-2024钢筋混凝土用钢第1部分:热轧光圆钢筋
- 闽教版小学六年级英语复习计划
- DBJ∕T 15-120-2017 城市轨道交通既有结构保护技术规范
- 知道网课智慧树《新时代大学生劳动教育(江苏大学)》章节测试答案
- 2024年俄罗斯低温潜液泵行业应用与市场潜力评估
- 劳动劳务合同模板
- 部编版五年级上册道德与法治期末测试卷附参考答案【综合题】
- 母婴护理智慧树知到期末考试答案章节答案2024年黑龙江护理高等专科学校
评论
0/150
提交评论