版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届承德市重点中学高一下数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在锐角中,若,,,则()A. B. C. D.2.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为13.已知向量,且,则的值为()A.6 B.-6 C. D.4.已知是第三象限的角,若,则A. B. C. D.5.在中,,,则的外接圆半径为()A.1 B.2 C. D.6.直线被圆截得的弦长为()A.4 B. C. D.7.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角8.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件9.对于一个给定的数列,定义:若,称数列为数列的一阶差分数列;若,称数列为数列的二阶差分数列.若数列的二阶差分数列的所有项都等于,且,则()A.2018 B.1009 C.1000 D.50010.若,则()A. B. C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.(理)已知函数,若对恒成立,则的取值范围为.12.用数学归纳法证明不等式“(且)”的过程中,第一步:当时,不等式左边应等于__________。13.若函数的图象与直线恰有两个不同交点,则m的取值范围是________.14.若满足约束条件,则的最小值为_________.15.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为.16.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求过三点的圆的方程.18.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各自随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:、、、、、,整理得到如下频率分布直方图:(1)试估计甲高中学生一周内平均每天学习数学的时间的中位数甲(精确到0.01);(2)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值甲与乙及方差甲与乙的大小关系(只需写出结论),并计算其中的甲、甲(同一组中的数据用该组区间的中点值作代表).19.设角,,其中:(1)若,求角的值;(2)求的值.20.设数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和.21.锐角的内角、、所对的边分别为、、,若.(1)求;(2)若,,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.2、C【解析】
根据频率分布直方图逐一计算分析.【详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【点睛】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率3、A【解析】
两向量平行,內积等于外积。【详解】,所以选A.【点睛】本题考查两向量平行的坐标运算,属于基础题。4、D【解析】
根据是第三象限的角得,利用同角三角函数的基本关系,求得的值.【详解】因为是第三象限的角,所以,因为,所以解得:,故选D.【点睛】本题考查余弦函数在第三象限的符号及同角三角函数的基本关系,即已知值,求的值.5、A【解析】
由同角三角函数关系式,先求得.再结合正弦定理即可求得的外接圆半径.【详解】中,由同角三角函数关系式可得由正弦定理可得所以,即的外接圆半径为1故选:A【点睛】本题考查了同角三角函数关系式的应用,正弦定理求三角形外接圆半径,属于基础题.6、B【解析】
先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【点睛】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.7、D【解析】
可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【点睛】本题主要考查了根据所在象限求所在象限的方法,属于中档题.8、A【解析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.9、C【解析】
根据题目给出的定义,分析出其数列的特点为等差数列,利用等差数列求解.【详解】依题意知是公差为的等差数列,设其首项为,则,即,利用累加法可得,由于,即解得,,故.选C.【点睛】本题考查新定义数列和等差数列,属于难度题.10、D【解析】
将转化为,结合二倍角的正切公式即可求出.【详解】故选D【点睛】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.12、【解析】
用数学归纳法证明不等式(且),第一步,即时,分母从3到6,列出式子,得到答案.【详解】用数学归纳法证明不等式(且),第一步,时,左边式子中每项的分母从3开始增大至6,所以应是.即为答案.【点睛】本题考查数学归纳法的基本步骤,属于简单题.13、【解析】
化简函数解析式为,做出函数的图象,数形结合可得的取值范围.【详解】解:因为所以,,由,可得,则函数,的图象与直线恰有两个不同交点,即方程在上有两个不同的解,画出的图象如下所示:依题意可得时,函数的图象与直线恰有两个不同交点,故答案为:【点睛】本题主要考查正弦函数的最大值和单调性,函数的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.14、3【解析】
在平面直角坐标系内,画出可行解域,平行移动直线,在可行解域内,找到直线在纵轴上截距最小时所经过点的坐标,代入目标函数中,求出目标函数的最小值.【详解】在平面直角坐标系中,约束条件所表示的平面区域如下图所示:当直线经过点时,直线纵轴上截距最小,解方程组,因此点坐标为,所以的最小值为.【点睛】本题考查了线性目标函数最小值问题,正确画出可行解域是解题的关键.15、2【解析】试题分析:设圆柱的底面半径为r,高为h,底面积为S,体积为V,则有2πr=2⇒r=1π,故底面面积S=πr考点:圆柱的体积16、(-∞,1)【解析】
由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
设圆的一般方程,利用待定系数法求解.【详解】设圆的方程为经过,所以,解得:,所以圆的方程为.【点睛】此题考查求圆的方程,根据圆上的三个点的坐标求圆的方程可以待定系数法求解,也可根据几何意义分别求出圆心和半径.18、(1);(2)甲乙,甲乙,甲=,甲=【解析】
(1)根据每组小矩形的面积确定中位数所在区间,即可求解;(2)根据直方图特征即可判定甲乙,甲乙,根据平均数和方差的公式分别计算求值.【详解】(1)由甲高中频率分布直方图可得:第一组频率0.1,第二组频率0.2,第三组频率0.3,所以中位数在第三组,甲;(2)根据两个频率分布直方图可得:甲乙,甲乙甲=甲=【点睛】此题考查频率分布直方图,根据两组直方图特征判断中位数和方差的大小关系,求中位数,平均数和方差,关键在于熟练掌握相关数据的求法,准确计算得解.19、(1);(2).【解析】
(1)由,可得出,进而得出,结合可求出角的值,可求出的值,再利用反余弦的定义即可求出角的值;(2)由题意可得出,,可计算出,根据反三角的定义得出,,利用两角和的正弦公式求出的值,即可得出角的值.【详解】(1),,,,则,可得,所以,可得.因此,;(2),则,所以,,由(1)知,所以,,,,,,由同角三角函数的基本关系可得,,由两角和的正弦公式可得,因此,.【点睛】本题考查反三角函数的定义,同时也考查了利用两角和的正弦公式的应用,在求角时,不要忽略了求角的取值范围,考查计算能力,属于中等题.20、【解析】试题分析:(1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1)由已知,当时,==,.而,所以数列的通项公式为.(2)由知…①……7分从而……②①②得,即.考点:1.累和法求数列通项公式;2.错位相减法求和21、(1);(2).【解析】
(1)利用正弦定理边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《分馏系统》课件
- 《妈妈的账单课堂》课件
- 小学一年级20以内100道口算题
- 电工安全培训资料(5篇)
- 石榴籽一家亲民族团结心连心心得体会5篇
- 小学数学一二年级100以内连加连减口算题
- 《用户画像业务讨论》课件
- 小学数学三年级下册《小数点加减法》口算练习题
- 《刑事诉讼法学教学》课件
- 小学三年级数学三位数加减法练习题-可直接打印
- 金工钒钛科技有限公司-年处理600万吨低品位钒钛磁铁矿选矿项目可行性研究报告
- ncv65系列安装金盘5发版说明
- 国能神皖安庆发电有限责任公司厂内108MW-108MWh储能项目环境影响报告表
- 华中师大《线性代数》练习测试题库及答案4096
- 铁路试验检测技术
- 2023-2024人教版小学2二年级数学下册(全册)教案【新教材】
- 小学奥数基础教程(附练习题和答案)
- 九年级语文上学期教学工作总结
- TWSJD 002-2019 医用清洗剂卫生要求
- GB/T 7324-2010通用锂基润滑脂
- 杭州地铁一号线工程某盾构区间实施施工组织设计
评论
0/150
提交评论