版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省武威市凉州区六坝乡中学高一下数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,c为△ABC的三个内角A,B,C的对边,向量=,=(cosA,sinA),若与夹角为,则acosB+bcosA=csinC,则角B等于()A. B. C. D.2.设、满足约束条件,则的最大值为()A. B.C. D.3.已知,所在平面内一点P满足,则()A. B. C. D.4.下列函数中,在区间上单调递增的是()A. B. C. D.5.已知数列满足,,则()A.1024 B.2048 C.1023 D.20476.下面的程序运行后,输出的值是()A.90 B.29 C.13 D.547.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.568.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B. C. D.9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.910.已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在直三棱柱中,,,,则异面直线与所成角的余弦值是_____________.12.若数列满足,且对于任意的,都有,则___;数列前10项的和____.13.在等差数列中,若,则______.14.已知函数分别由下表给出:123211123321则当时,_____________.15.计算:______.16.数列中,其前n项和,则的通项公式为______________..三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.18.已知,,其中,,且函数在处取得最大值.(1)求的最小值,并求出此时函数的解析式和最小正周期;(2)在(1)的条件下,先将的图像上的所有点向右平移个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移个单位,得到函数的图像.若在区间上,方程有两个不相等的实数根,求实数a的取值范围;(3)在(1)的条件下,已知点P是函数图像上的任意一点,点Q为函数图像上的一点,点,且满足,求的解集.19.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.20.某超市为了解端午节期间粽子的销售量,对其所在销售范围内的1000名消费者在端午节期间的粽子购买量(单位:g)进行了问卷调查,得到如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值;(Ⅱ)求这1000名消费者的棕子购买量在600g~1400g的人数;(Ⅲ)求这1000名消费者的人均粽子购买量(频率分布直方图中同一组的数据用该组区间的中点值作代表).21.已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).(1)已知,并且对任意的恒成立,试求的通项公式;(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;(3)已知,,试计算.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据向量夹角求得角的度数,再利用正弦定理求得即得解.【详解】由已知得:所以所以由正弦定理得:所以又因为所以因为所以所以故选B.【点睛】本题考查向量的数量积和正弦定理,属于中档题.2、C【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.3、D【解析】
由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.4、A【解析】
判断每个函数在上的单调性即可.【详解】解:在上单调递增,,和在上都是单调递减.故选:A.【点睛】考查幂函数、指数函数、对数函数和反比例函数的单调性.5、C【解析】
根据叠加法求结果.【详解】因为,所以,因此,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.6、D【解析】
根据程序语言的作用,模拟程序的运行结果,即可得到答案.【详解】模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,退出循环,输出的值为1.故选:D.【点睛】本题考查利用模拟程序执行过程求输出结果,考查逻辑推理能力和运算求解能力,属于基础题.7、C【解析】
利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【详解】设等差数列an公差为则a2+∴本题正确选项:C【点睛】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.8、C【解析】
将平移到一起,根据等边三角形的性质判断出两条异面直线所成角的大小.【详解】连接如下图所示,由于分别是棱和棱的中点,故,根据正方体的性质可知,所以是异面直线所成的角,而三角形为等边三角形,故.故选C.【点睛】本小题主要考查空间异面直线所成角的大小的求法,考查空间想象能力,属于基础题.9、C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.10、A【解析】
先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先找出线面角,运用余弦定理进行求解【详解】连接交于点,取中点,连接,则,连接为异面直线与所成角在中,,,同理可得,,异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.12、,【解析】试题分析:由得由得,所以数列为等比数列,因此考点:等比数列通项与和项13、【解析】
利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.14、3【解析】
根据已知,用换元法,从外层求到里层,即可求解.【详解】令.故答案为:.【点睛】本题考查函数的表示,考查复合函数值求参数,换元法是解题的关键,属于基础题.15、【解析】
在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.16、【解析】
利用递推关系,当时,,当时,,即可求出.【详解】由题知:当时,.当时,.检验当时,,所以.故答案为:【点睛】本题主要考查根据数列的前项和求数列的通项公式,体现了分类讨论的思想,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),【解析】
(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【点睛】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.18、(1)的最小值为1,,,(2)(3)原不等式的解集为【解析】
(1)先将化成正弦型,然后利用在处取得最大值求出,然后即可得到的解析式和周期(2)先根据图象的变换得到,然后画出在区间上的图象,条件转化为的图象与直线有两个交点即可(3)利用坐标的对应关系式,求出的函数的关系式,进一步利用三角不等式的应用求出结果.【详解】(1)因为,所以因为在处取得最大值.所以,即当时的最小值为1此时,(2)将的图像上的所有的点向右平移个单位得到的函数为,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为,然后将所得图像上所有的点向下平移个单位,得到函数在区间上的图象为:方程有两个不相等的实数根等价于的图象与直线有两个交点所以,解得(3)设,因为点,且满足所以,所以因为点为函数图像上的一点所以即因为,所以所以所以所以原不等式的解集为【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.19、(1);(2).【解析】
(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到关于的函数,由于是锐角三角形,所以利用三个内角都小于来计算的定义域,最后求解的值域.【详解】(1)根据题意,由正弦定理得,因为,故,消去得.,因为故或者,而根据题意,故不成立,所以,又因为,代入得,所以.(2)因为是锐角三角形,由(1)知,得到,故,解得.又应用正弦定理,,由三角形面积公式有:.又因,故,故.故的取值范围是【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.20、(Ⅰ)a=0.1(Ⅱ)2(Ⅲ)1208g【解析】
(Ⅰ)由频率分布直方图的性质,列出方程,即可求解得值;(Ⅱ)先求出粽子购买量在的频率,由此能求出这1000名消费者的粽子购买量在的人数;(Ⅲ)由频率分布直方图能求出1000名消费者的人均购买粽子购买量【详解】(Ⅰ)由频率分布直方图的性质,可得(0.0002+0.00055+a+0.0005+0.00025)×400=1,解得a=0.1.(Ⅱ)∵粽子购买量在600g~1400g的频率为:(0.00055+0.1)×400=0.62,∴这1000名消费者的棕子购买量在600g~1400g的人数为:0.62×1000=2.(Ⅲ)由频率分布直方图得这1000名消费者的人均粽子购买量为:(400×0.0002+800×0.00055+1200×0.1+1600×0.0005+2000×0.00025)×400=1208g.【点睛】本题主要考查了频率、频数、以及频率分布直方图的应用,其中解答中熟记频率分布直方图的性质是解答此类问题的关键,着重考查了分析问题和解答问题的能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技驱动农产品电商
- 科技农业投资视角
- 专业房产经纪服务协议2024版范本版
- 二零二四宇通客车零部件销售代理及市场拓展合作协议3篇
- 2025年度电商新零售线下体验店合作合同3篇
- 专业销售服务协议书2024年3篇
- 2025年度跨境电商物流中心场地承包经营合同4篇
- 2025年度航空航天复合材料加工技术合同4篇
- 2025年度茶楼装修工程合同标准样本8篇
- 2025年度教育机构场地租赁保证金合同8篇
- 2024版塑料购销合同范本买卖
- 【高一上】【期末话收获 家校话未来】期末家长会
- JJF 2184-2025电子计价秤型式评价大纲(试行)
- GB/T 44890-2024行政许可工作规范
- 有毒有害气体岗位操作规程(3篇)
- 二年级下册加减混合竖式练习360题附答案
- 吞咽解剖和生理研究
- TSG11-2020 锅炉安全技术规程
- 汽轮机盘车课件
- 异地就医备案个人承诺书
- 苏教版五年级数学下册解方程五种类型50题
评论
0/150
提交评论