浙江省湖州市天略外国语学校2025届数学高一下期末综合测试模拟试题含解析_第1页
浙江省湖州市天略外国语学校2025届数学高一下期末综合测试模拟试题含解析_第2页
浙江省湖州市天略外国语学校2025届数学高一下期末综合测试模拟试题含解析_第3页
浙江省湖州市天略外国语学校2025届数学高一下期末综合测试模拟试题含解析_第4页
浙江省湖州市天略外国语学校2025届数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州市天略外国语学校2025届数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.2.已知,则下列不等式中成立的是()A. B. C. D.3.下列极限为1的是()A.(个9) B.C. D.4.若,则()A.0 B.-1 C.1或0 D.0或-15.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值6.设是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,,则B.若,,则C.若,,则是异面直线D.若,,,则7.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=8.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.9.已知函数和的定义域都是,则它们的图像围成的区域面积是()A. B. C. D.10.已知,复数,若的虚部为1,则()A.2 B.-2 C.1 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,关于此函数的说法:①为周期函数;②有对称轴;③为的对称中心;④;正确的序号是_________.12.函数的图象过定点______.13.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.14.已知向量,若,则_______15.已知数列满足则的最小值为__________.16.已知等差数列的前三项为,则此数列的通项公式为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图是某地某公司名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在元到元之间的人数;(2)该公司员工的月平均收入.18.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.19.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.20.已知等比数列的首项为,公比为,它的前项和为.(1)若,,求;(2)若,,且,求.21.已知等差数列满足,且.(1)求数列的通项;(2)求数列的前项和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.2、D【解析】

由,,计算可判断;由,,计算可判断;由,可判断;作差可判断.【详解】解:,当,时,可得,故错误;当,时,,故错误;当,,故错误;,即,故正确.故选:.【点睛】本题考查不等式的性质,考查特殊值的运用,以及运算能力,属于基础题.3、A【解析】

利用极限的运算逐项求解判断即可【详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题4、D【解析】

由二倍角公式可得,即,从而分情况求解.【详解】易得,或.

由得.

由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.5、C【解析】

设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.6、A【解析】

利用线面垂直的判定,线面平行的判定,线线的位置关系及面面平行的性质逐一判断即可.【详解】对于A,垂直于同一个平面的两条直线互相平行,故A正确.对于B,若,,则或,故B错误.对于C,若,,则位置关系为平行或相交或异面,故C错误.对于D,若,,,则位置关系为平行或异面,故D错误.故选:A【点睛】本题主要考查了线面垂直的性质,线面平行的判定和面面平行的性质,属于简单题.7、D【解析】

由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.8、C【解析】

将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.9、C【解析】

由可得,所以的图像是以原点为圆心,为半径的圆的上半部分;再结合图形求解.【详解】由可得,作出两个函数的图像如下:则区域①的面积等于区域②的面积,所以他们的图像围成的区域面积为半圆的面积,即.故选C.【点睛】本题考查函数图形的性质,关键在于的识别.10、B【解析】,所以,。故选B。二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】

由三角函数的性质及,分别对各选项进行验证,即可得出结论.【详解】解:由函数,可得①,可得为周期函数,故①正确;②由,,故,是偶函数,故有对称轴正确,故②正确;③为偶数时,,为奇数时,故不为的对称中心,故③不正确;④由,可得正确,故④正确.故答案为:①②④.【点睛】本题主要考查三角函数的值域、周期性、对称性等相关知识,综合性大,属于中档题.12、【解析】

令真数为,求出的值,代入函数解析式可得出定点坐标.【详解】令,得,当时,.因此,函数的图象过定点.故答案为:.【点睛】本题考查对数型函数图象过定点问题,一般利用真数为来求得,考查计算能力,属于基础题.13、【解析】

设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【点睛】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.14、【解析】

由题意利用两个向量垂直的性质,两个向量的数量积公式,求得的值.【详解】因为向量,若,∴,则.故答案为:1.【点睛】本题主要考查两个向量垂直的坐标运算,属于基础题.15、【解析】

先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.16、【解析】由题意可得,解得.

∴等差数列的前三项为-1,1,1.

则1.

故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据频率分布直方图得出该公司月收入在元到元的员工所占的频率,再乘以可得出所求结果;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得的积全部相加可得出该公司员工月收入的平均数.【详解】(1)根据频率分布直方图知,该公司月收入在元到元的员工所占的频率为:,因此,该公司月收入在元到元之间的人数为;(2)据题意该公司员工的平均收入为:(元).【点睛】本题考查频率分布直方图的应用,考查频数的计算以及平均数的计算,解题时要注意频数、平均数的计算原则,考查计算能力,属于基础题.18、(1)-3;(2)证明见解析.【解析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量积的运算法则,二次函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.19、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.20、(1);(2).【解析】

(1)根据题意建立和的方程组,求出这两个量,然后利用等比数列的通项公式可求出;(2)分、、三种情况讨论,然后利用等比数列的求和公式求出和,即可计算出.【详解】(1)若,则,得,则,这与矛盾,则,所以,,解得,因此,;(2)当时,则,所以,;当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论