版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省天门市高一数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,,则中元素的个数为()A.0 B.1 C.2 D.32.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是()A.中位数为83 B.众数为85 C.平均数为85 D.方差为193.已知,,下列不等式成立的是()A. B.C. D.4.已知三棱锥的所有顶点都在球的球面上,,则球的表面积为()A. B. C. D.5.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.6.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形7.已知O,N,P在所在平面内,且,,且,则点O,N,P依次是的()A.重心外心垂心 B.重心外心内心C.外心重心垂心 D.外心重心内心8.若满足,且的最小值为,则实数的值为()A. B. C. D.9.在中,设角,,的对边分别是,,,若,,,则其面积等于()A. B. C. D.10.等比数列,…的第四项等于(
)A.-24 B.0 C.12 D.24二、填空题:本大题共6小题,每小题5分,共30分。11.若、是方程的两根,则__________.12.在等比数列中,,,则_____.13.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.14.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___15.设函数满足,当时,,则=________.16.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数.(1)求函数的图象的对称轴方程;(2)当时,不等式恒成立,求m的取值范围.18.已知正项等比数列满足,,数列满足.(1)求数列,的通项公式;(2)令,求数列的前项和;(3)若,且对所有的正整数都有成立,求的取值范围.19.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:)的数据如下:甲273830373531乙332938342836试判断选谁参加某项重大比赛更合适.20.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a21.设是等差数列,,且成等比数列.(1)求的通项公式;(2)记的前项和为,求的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,则,所以,元素个数为2个。故选C。2、C【解析】试题分析:A选项,中位数是84;B选项,众数是出现最多的数,故是83;C选项,平均数是85,正确;D选项,方差是,错误.考点:茎叶图的识别相关量的定义3、A【解析】
由作差法可判断出A、B选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C选项中不等式的正误;利用指数函数的单调性可判断出D选项中不等式的正误.【详解】对于A选项中的不等式,,,,,,,,A选项正确;对于B选项中的不等式,,,,,,,B选项错误;对于C选项中的不等式,,,,,,,即,C选项错误;对于D选项中的不等式,,函数是递减函数,又,所以,D选项错误.故选A.【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.4、A【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.5、A【解析】
观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。6、C【解析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;7、C【解析】
根据向量关系,,所在直线经过中点,由得,即可得解.【详解】由题:,所以O是外接圆的圆心,取中点,,,即所在直线经过中点,与中线共线,同理可得分别与边的中线共线,即N是三角形三条中线交点,即重心,,,,,即,同理可得,即P是三角形的垂心.故选:C【点睛】此题考查利用向量关系判别三角形的外心,重心和垂心,关键在于准确进行向量的运算,根据运算结果得结论.8、B【解析】
首先画出满足条件的平面区域,然后根据目标函数取最小值找出最优解,把最优解点代入目标函数即可求出的值.【详解】画出满足条件的平面区域,如图所示:,由,解得:,由得:,显然直线过时,z最小,∴,解得:,故选B.【点睛】本题主要考查简单的线性规划,已知目标函数最值求参数的问题,属于常考题型.9、C【解析】
直接利用三角形的面积的公式求出结果.【详解】解:中,角,,的对边边长分别为,,,若,,,则,故选:.【点睛】本题考查的知识要点:三角形面积公式的应用及相关的运算问题,属于基础题.10、A【解析】由x,3x+3,6x+6成等比数列得选A.考点:该题主要考查等比数列的概念和通项公式,考查计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【详解】解:、是方程的两根,,,,或,,则,故答案为:.【点睛】本题主要考查韦达定理,两角差的正切公式,属于基础题.12、1【解析】
由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.13、【解析】
由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.14、6【解析】
先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【点睛】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.15、【解析】
由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.16、【解析】
过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)首先利用二倍角公式及两角和差的正弦公式化简得到,再根据正弦函数的性质求出函数的对称轴;(2)由,求出的值域,设,则.则当时,不等式恒成立,等价于对于恒成立,则解得即可;【详解】解:(1).即令,解得,则图象的对称轴方程为,(2)当时,,则,从而,设,则.当时,不等式恒成立,等价于对于恒成立,则解得.故m的取值范围为.【点睛】本题考查两角和与差的正弦公式,考查三角变换与辅助角公式的应用,突出考查正弦函数的性质以及一元二次不等式在给定区间上恒成立问题,属于中档题.18、(1),;(2);(3).【解析】
(1)设等比数列的公比为,则,根据条件可求出的值,利用等比数列的通项公式可求出,再由对数的运算可求出数列的通项公式;(2)求出数列的通项公式,然后利用错位相减法求出数列的前项和为;(3)利用数列单调性的定义求出数列最大项的值为,由题意得出关于的不等式对任意的恒成立,然后利用参变量分离法得出,并利用基本不等式求出在时的最小值,即可得出实数的取值范围.【详解】(1)设等比数列的公比为,则,由可得,,,即,,解得,.;(2)由(1)可得,,可得,上式下式,得,因此,;(3),,,,即,则有.所以,数列是单调递减数列,则数列的最大项为.由题意可知,关于的不等式对任意的恒成立,.由基本不等式可得,当且仅当时,等号成立,则在时的最小值为,,因此,实数的取值范围是.【点睛】本题考查等比数列通项公式的求解,考查错位相减求和法以及数列不等式恒成立问题,涉及数列最大项的问题,一般利用数列单调性的定义来求解,考查分析问题和解决问题的能力,属于中等题.19、乙,理由见解析.【解析】
分别求解两人的测试数据的平均数和方差,然后进行判定.【详解】甲的平均数为:,方差为:;乙的平均数为:,方差为:;因为,,所以选择乙参加比赛较为合适.【点睛】本题主要考查统计量的求解及决策问题,平均数表示平均水平的高低,方差表示稳定性,侧重考查数据分析的核心素养.20、(1)-π4【解析】
(1)两向量垂直,坐标关系满足x1x2+y1y2=0,由已知可得关于sin【详解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现大全员工管理篇
- 七年级英语Writingatouristguide课件
- 《电潜泵管理》课件
- 3.10 建设中国特色社会主义 课时练习-2021-2022学年部编版八年级历史下册
- 让CAR-T细胞治疗更精准为CAR-T开发提供综合性方案
- 《全球化与管理》课件
- 三年级科学教学工作计划(9篇)
- 化工销售工作总结
- 能源行业员工福利体系构建
- 2023年项目部安全培训考试题答案满分必刷
- 初中化学实验安全教育
- 《预测与决策教程第2版》(习题解答)机工版
- GT 42456-2023 工业自动化和控制系统信息安全 IACS组件的安全技术要求
- 服装色彩搭配智慧树知到期末考试答案2024年
- 自动扶梯事故应急处置预案
- 招生人员培训课件
- 2023-2024学年深圳市罗湖区七年级(上)期末考试 英语 试题(解析版)
- 中国阴离子交换膜行业调研分析报告2024年
- 医美行业监管政策与竞争环境
- 2024年02月湖北武汉市公安局招考聘用辅警267人笔试历年高频考题(难、易错点荟萃)答案带详解附后
- 房屋移交的时间和方式
评论
0/150
提交评论