黑龙江省佳木斯中学2025届高一数学第二学期期末复习检测模拟试题含解析_第1页
黑龙江省佳木斯中学2025届高一数学第二学期期末复习检测模拟试题含解析_第2页
黑龙江省佳木斯中学2025届高一数学第二学期期末复习检测模拟试题含解析_第3页
黑龙江省佳木斯中学2025届高一数学第二学期期末复习检测模拟试题含解析_第4页
黑龙江省佳木斯中学2025届高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省佳木斯中学2025届高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足:则A. B. C. D.2.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c3.已知圆,设平面区域,若圆心,且圆与轴相切,则的最大值为()A.5 B.29 C.37 D.494.设,且,则()A. B. C. D.5.“是与的等差中项”是“是与的等比中项”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.△中,已知,,,如果△有两组解,则的取值范围()A. B. C. D.7.在中,角均为锐角,且,则的形状是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形8.已知数列的通项公式为,则72是这个数列的()A.第7项 B.第8项 C.第9项 D.第10项9.已知等比数列的前项和为,若,,则数列的公比()A. B. C.或 D.以上都不对10.已知直线经过点,且与直线垂直,则的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且是第一象限角,则的值为__________.12.已知,则______.13.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.14.把数列的各项排成如图所示三角形状,记表示第m行、第n个数的位置,则在图中的位置可记为____________.15.数列中,已知,50为第________项.16.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形ABCD中,,,已知,.(1)求的值;(2)若,且,求BC的长.18.求适合下列条件的直线方程:经过点,倾斜角等于直线的倾斜角的倍;经过点,且与两坐标轴围成一个等腰直角三角形。19.如图,四棱柱的底面是菱形,平面,,,,点为的中点.(1)求证:直线平面;(2)求证:平面;(3)求直线与平面所成的角的正切值.20.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份

2010

2011

2012

2013

2014

时间代号

1

2

3

4

5

储蓄存款(千亿元)

5

6

7

8

10

(Ⅰ)求y关于t的回归方程(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中21.已知,.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用向量的数量积运算及向量的模运算即可求出.【详解】∵||=3,||=2,|+|=4,∴|+|2=||2+||2+2=16,∴2=3,∴|﹣|2=||2+||2﹣2=9+4﹣3=10,∴|﹣|=,故选D.【点睛】本题考查了向量的数量积运算和向量模的计算,属于基础题.2、D【解析】

根据不等式的性质判断.【详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【点睛】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.3、C【解析】试题分析:作出可行域如图,圆C:(x-a)2+(y-b)2=1的圆心为,半径的圆,因为圆心C∈Ω,且圆C与x轴相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由图像可知当圆心C位于B点时,取得最大值,B点的坐标为,即时是最大值.考点:线性规划综合问题.4、B【解析】

利用两角和差正切公式可求得;根据范围可求得;利用两角和差公式计算出;利用两角和差余弦公式计算出结果.【详解】,又本题正确选项:【点睛】本题考查利用三角恒等变换中的两角和差的正余弦和正切公式求解三角函数值的问题,涉及到同角三角函数关系的应用;关键是能够熟练应用两角和差公式进行配凑,求得所需的三角函数值.5、A【解析】

根据等差中项和等比中项的定义,结合充分条件和必要条件的定义进行判断即可.【详解】若是与的等差中项,则,若是与的等比中项,则,则“是与的等差中项”是“是与的等比中项”的充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合等差中项和等比中项的定义求出的值是解决本题的关键.6、D【解析】由正弦定理得A+C=180°-60°=120°,

由题意得:A有两个值,且这两个值之和为180°,

∴利用正弦函数的图象可得:60°<A<120°,

若A=90,这样补角也是90°,一解,不合题意,<sinA<1,

∵x=sinA,则2<x<故选D7、C【解析】,又角均为锐角,则,,且中,,的形状是钝角三角形,故选C.【方法点睛】本题主要考查利用诱导公式、正弦函数的单调性以及判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.8、B【解析】

根据数列的通项公式,令,求得的值,即可得到答案.【详解】由题意,数列的通项公式为,令,即,解得或(不合题意),所以是数列的第8项,故选B.【点睛】本题主要考查了数列的通项公式的应用,着重考查了运算与求解能力,属于基础题.9、C【解析】

根据和可得,解得结果即可.【详解】由得,所以,所以,所以,解得或故选:C.【点睛】本题考查了等比数列的通项公式的基本量的运算,属于基础题.10、D【解析】

设直线的方程为,代入点(1,0)的坐标即得解.【详解】设直线的方程为,由题得.所以直线的方程为.故选D【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

利用两角和的公式把题设展开后求得的值,进而利用的范围判断的范围,利用同角三角函数的基本关系求得的值,最后利用诱导公式和对原式进行化简,把的值和题设条件代入求解即可.【详解】,,即,,两边同时平方得到:,解得,是第一象限角,,得,,即为第一或第四象限,,.故答案为:.【点睛】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.12、【解析】

由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】由题意得出.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.13、.【解析】

先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.14、【解析】

利用第m行共有个数,前m行共有个数,得的位置即可求解【详解】因为第m行共有个数,前m行共有个数,所以应该在第11行倒数第二个数,所以的位置为.故答案为:【点睛】本题考查等差数列的通项和求和公式,发现每行个数成等差是关键,是基础题15、4【解析】

方程变为,设,解关于的二次方程可求得。【详解】,则,即设,则,有或取得,,所以是第4项。【点睛】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。16、(4,5)4.【解析】

根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由正弦定理可得;(2)由(1)求得,然后利用余弦定理求解.【详解】(1)在中,由正弦定理,得,因为,,,所以;(2)由(1)可知,,因为,所以,在中,由余弦定理,得,因为,,所以,即,解得或,又,则.【点睛】本题考查正弦定理和余弦定理解三角形,掌握正弦定理和余弦定理是解题关键.18、(1)(2)或【解析】

(1)根据倾斜角等于直线的倾斜角的倍,求出直线的倾斜角,再利用点斜式写出直线。(2)与两坐标轴围成一个等腰直角三角形等价于直线的斜率为.【详解】(1)已知,直线方程为化简得(2)由题意可知,所求直线的斜率为.又过点,由点斜式得,所求直线的方程为或【点睛】本题考查直线方程,属于基础题。19、(1)见解析;(2)见解析;(3)【解析】

(1)只需证明PO∥BD1,即可得BD1∥平面PAC;(2)只需证明AC⊥BD.DD1⊥AC.即可证明AC⊥平面BDD1B1(3)∠CPO就是直线CP与平面BDD1B1所成的角,在Rt△CPO中,tan∠CPO即可求解【详解】(1)设和交于点,连结,由于,分别是,的中点,故,∵平面,平面所以直线平面.(2)在四棱柱中,底面是菱形,则又平面,且平面,则,∵平面,平面,∴平面.(3)由(2)知平面.∴在平面内的射影为∴是与平面所成的角因为,所以为正三角形∴,在中,.∴与平面所成的角的正切值为.【点睛】本题考查了线面垂直、线面平行的判定定理、线面角,属于中档题.20、(Ⅰ),(Ⅱ)千亿元.【解析】试题分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,(Ⅱ)将代入回归方程可预测该地区2015年的人民币储蓄存款.试题解析:(1)列表计算如下i

1

1

5

1

5

2

2

6

4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论