2025届山西省怀仁市重点中学高一数学第二学期期末检测模拟试题含解析_第1页
2025届山西省怀仁市重点中学高一数学第二学期期末检测模拟试题含解析_第2页
2025届山西省怀仁市重点中学高一数学第二学期期末检测模拟试题含解析_第3页
2025届山西省怀仁市重点中学高一数学第二学期期末检测模拟试题含解析_第4页
2025届山西省怀仁市重点中学高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省怀仁市重点中学高一数学第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.两直角边分别为1,的直角三角形绕其斜边所在的直线旋转一周,得到的几何体的表面积是()A. B.3π C. D.2.使函数是偶函数,且在上是减函数的的一个值是()A. B. C. D.3.《九章算术》卷五商功中有如下问题:今有刍甍(底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.下图网格纸中实线部分为此刍甍的三视图,设网格纸上每个小正方形的边长为1丈,那么此刍甍的体积为()A.3立方丈 B.5立方丈 C.6立方丈 D.12立方丈4.已知两个正数a,b满足,则的最小值是(

)A.2 B.3 C.4 D.55.若,且,恒成立,则实数的取值范围是()A. B.C. D.6.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.7.将函数的图象向左平移个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若对任意的均有成立,则的最小值为()A. B. C. D.8.某高级中学共有学生3000人,其中高二年级有学生800人,高三年级有学生1200人,为了调查学生的课外阅读时长,现用分层抽样的方法从所有学生中抽取75人进行问卷调查,则高一年级被抽取的人数为()A.20 B.25 C.30 D.359.已知直三棱柱的所有顶点都在球0的表面上,,,则=()A.1 B.2 C. D.410.已知数列为等比数列,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,其前n项和,则的通项公式为______________..12.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.13.已知,若对任意,均有,则的最小值为______;14.已知向量,,则在方向上的投影为______.15.数列满足,则数列的前6项和为_______.16.设满足约束条件若目标函数的最大值为,则的最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求函数的单调递减区间;(2)若,求函数的值域.18.已知数列的前项和,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.19.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.20.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面底面ABCD,已知,为正三角形.(1)证明.(2)若,,求二面角的大小的余弦值.21.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥的侧面积计算公式可得.【详解】由题得直角三角形的斜边为2,则斜边上的高为.由题知该几何体为两个倒立的圆锥底对底组合在一起,其中,故选.【点睛】本题考查旋转体的定义,圆锥的表面积的计算,属于基础题.2、B【解析】

先根据辅助角公式化简,再根据奇偶性及在在上是减函数为减函数即可算出的范围。【详解】由题意得:因为是偶函数,所以,又因为在的减区间为,,在上是减函数,所以当时满足,选B.【点睛】本题主要考查了三角函数的性质:奇偶性质、单调性以及辅助角公式。型为奇函数,为偶函数。其中辅助角公式为。属于中等题。3、B【解析】几何体如图:体积为,选B.点睛:(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.4、D【解析】

根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.5、A【解析】

将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.6、A【解析】

利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.7、D【解析】

直接应用正弦函数的平移变换和伸缩变换的规律性质,求出函数的解析式,对任意的均有,说明函数在时,取得最大值,得出的表达式,结合已知选出正确答案.【详解】因为函数的图象向左平移个单位长度,所以得到函数,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,所以,对任意的均有成立,所以在时,取得最大值,所以有而,所以的最小值为.【点睛】本题考查了正弦型函数的图象变换规律、函数图象的性质,考查了函数最大值的概念,正确求出变换后的函数解析式是解题的关键.8、B【解析】

通过计算三个年级的人数比例,于是可得答案.【详解】抽取比例为753000=140,高一年级有【点睛】本题主要考查分层抽样的相关计算,难度很小.9、B【解析】

由题得在底面的投影为的外心,故为的中点,再利用数量积计算得解.【详解】依题意,在底面的投影为的外心,因为,故为的中点,,故选B.【点睛】本题主要考查平面向量的运算,意在考查学生对该知识的理解掌握水平,属于基础题.10、A【解析】

根据等比数列性质知:,得到答案.【详解】已知数列为等比数列故答案选A【点睛】本题考查了等比数列的性质,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用递推关系,当时,,当时,,即可求出.【详解】由题知:当时,.当时,.检验当时,,所以.故答案为:【点睛】本题主要考查根据数列的前项和求数列的通项公式,体现了分类讨论的思想,属于简单题.12、【解析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.13、【解析】

根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.14、【解析】

由平面向量投影的定义可得出在方向上的投影为,从而可计算出结果.【详解】设平面向量与的夹角为,则在方向上的投影为.故答案为:.【点睛】本题考查平面向量投影的计算,熟悉平面向量投影的定义是解题的关键,考查计算能力,属于基础题.15、84【解析】

根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.16、【解析】

试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)由二倍角公式将表达式化一得到,,令,得到单调区间;(2)时,,根据第一问的表达式得到值域.详解:(1)由令得:所以,函数的单调减区间为(2)当时,所以,函数的值域是:.点睛:本题求最值利用三角函数辅助角公式将函数化为的形式,利用三角函数的图像特点得到函数的值域.18、(Ⅰ);(Ⅱ).【解析】

(1)本题可令求出的值,然后令求出,即可求出数列的通项公式;(2)首先可令,然后根据错位相减法即可求出数列的前项和。【详解】(1)当,,得.当时,,,两式相减,得,化简得,所以数列是首项为、公比为的等比数列,所以。(2)由(1)可知,令,则①,两边同乘以公比,得到②,由①②得:所以。【点睛】本题主要考查了数列通项的求法以及数列前项和的方法,求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等;求数列前项和常用的方法有:错位相减法、裂项相消法、公式法、分组求和法等,属于中等题。19、(1),;(2)最大值为,最小值为【解析】

利用二倍角公式、两角和差正弦公式和辅助角公式可化简出;(1)令,解出的范围即为所求单调递增区间;(2)利用的范围可求得所处的范围,整体对应正弦函数图象可确定最大值和最小值取得时的值,进而求得最值.【详解】(1)令,,解得:,的单调递增区间为,(2)当时,当时,取得最大值,最大值为当时,取得最小值,最小值为【点睛】本题考查正弦型函数单调区间和最值的求解问题,涉及到利用两角和差公式、二倍角公式和辅助角公式化简三角函数;关键是能够灵活应用整体对应的方式,结合正弦函数的图象与性质来进行求解.20、(1)证明见解析.(2)二面角的余弦值为.【解析】

(1)作于点,连接,根据面面垂直性质可得底面ABCD,由三角形全等性质可得,进而根据线面垂直判定定理证明平面,即可证明.(2)根据所给角度和线段关系,可证明以均为等边三角形,从而取中点,连接,即可由线段长结合余弦定理求得二面角的大小.【详解】(1)证明:作于点,连接,如下图所示:因为侧面底面ABCD,则底面ABCD,因为为正三角形,则,所以,即,又因为,所以,而,所以平面,所以.(2)由(1)可知,,,所以,又因为,所以,即为中点.由等腰三角形三线合一可知,在中,由等腰三角形三线合一可得,所以均为边长为2的等边三角形,取中点,连接,如下图所示:由题意可知,即为二面角的平面角,所以在中由余弦定理可得,即二面角的余弦值为.【点睛】本题考查了线面垂直的判定定理,面面垂直的性质应用,二面角夹角的去找法及由余弦定理求二面角夹角的余弦值,属于中档题.21、(1)(2)单调增区间为,;单调减区间为.【解析】

(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与轴相邻的两个交点的距离为,得出周期,利用周期公式得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论