版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市第二中学2025届高一数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.过点且与直线垂直的直线方程是.A. B. C. D.3.给出函数为常数,且,,无论a取何值,函数恒过定点P,则P的坐标是A. B. C. D.4.直线(是参数)被圆截得的弦长等于()A. B. C. D.5.在等差数列中,若,则()A. B. C. D.6.为了得到函数的图象,只需将函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.将函数的图象向左平移个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若对任意的均有成立,则的最小值为()A. B. C. D.8.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.9.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.4810.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,若,则______.12.点与点关于直线对称,则直线的方程为______.13.已知,则与的夹角等于___________.14.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).15.已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.16.等差数列中,,则其前12项之和的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角,,的对边分别为,,,设.(1)求;(2)若,求.18.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制.各等级划分标准见下表.规定:三级为合格等级,D为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计.按照的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.(I)求和频率分布直方图中的的值,并估计该校高一年级学生成绩是合格等级的概率;(II)在选取的样本中,从两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是等级的概率.19.设数列满足,,,.s(1)证明:数列是等差数列,并求数列的通项;(2)求数列的通项,并求数列的前项和;(3)若,且是单调递增数列,求实数的取值范围.20.在中,内角,,的对边分别为,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面积为,求的值.21.求过点且与圆相切的直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用直线与平面平行、垂直的判断即可。【详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【点睛】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。2、A【解析】
根据与已知直线垂直的直线系方程可假设直线为,代入点解得直线方程.【详解】设与直线垂直的直线为:代入可得:,解得:所求直线方程为:,即本题正确选项:【点睛】本题考查利用两条直线的垂直关系求解直线方程的问题,属于基础题.3、D【解析】试题分析:因为恒过定点,所以函数恒过定点.故选D.考点:指数函数的性质.4、D【解析】
先消参数得直线普通方程,再根据垂径定理得弦长.【详解】直线(是参数),消去参数化为普通方程:.圆心到直线的距离,∴直线被圆截得的弦长.故选D.【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.5、B【解析】
由等差数列的性质可得,则答案易求.【详解】在等差数列中,因为,所以.所以.故选B.【点睛】本题考查等差数列性质的应用.在等差数列中,若,则.特别地,若,则.6、C【解析】
利用诱导公式,的图象变换规律,得出结论.【详解】为了得到函数的图象,
只需将函数图象上所有的点向左平移个单位长度,
故选C.7、D【解析】
直接应用正弦函数的平移变换和伸缩变换的规律性质,求出函数的解析式,对任意的均有,说明函数在时,取得最大值,得出的表达式,结合已知选出正确答案.【详解】因为函数的图象向左平移个单位长度,所以得到函数,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,所以,对任意的均有成立,所以在时,取得最大值,所以有而,所以的最小值为.【点睛】本题考查了正弦型函数的图象变换规律、函数图象的性质,考查了函数最大值的概念,正确求出变换后的函数解析式是解题的关键.8、A【解析】,,,故选A.9、B【解析】
根据分层抽样各层在总体的比例与在样本的比例相同求解.【详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【点睛】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.10、B【解析】
根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角。【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小.∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.12、【解析】
根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【点睛】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.13、【解析】
利用再结合已知条件即可求解【详解】由,即,故答案为:【点睛】本题考查向量的夹角计算公式,在考题中应用广泛,属于中档题14、②④.【解析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.15、如果l⊥α,m∥α,则l⊥m或如果l⊥α,l⊥m,则m∥α.【解析】
将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m.正确;(2)如果l⊥α,l⊥m,则m∥α.正确;(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.16、【解析】
利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.18、(I),;(II).【解析】试题分析:(I)根据频率直方图的相关概率易求,依据样本估计总体的思想可得该校高一年级学生成绩是合格等级的概率;(II)记“至少有一名学生是等级”事件为,求事件对立事件的的概率,可得.试题解析:(I)由题意可知,样本容量因为成绩是合格等级人数为:人,抽取的50人中成绩是合格等级的频率为,依据样本估计总体的思想,所以,该校高一年级学生成绩是合格等级的概率为(II)由茎叶图知,等级的学生共有3人,等级学生共有人,记等级的学生为,等级学生为,则从8名学生中随机抽取2名学生的所有情况为:共28个基本事件记“至少有一名学生是等级”事件为,则事件的可能结果为共10种因此考点:1、频率分布直方图;2、古典概型.19、(1)证明见解析,;(2),;(3).【解析】
(1)利用等差数列的定义可证明出数列是等差数列,并确定该数列的首项和公差,即可得出数列的通项;(2)利用累加法求出数列的通项,然后利用裂项法求出数列的前项和;(3)求出,然后分为正奇数和正偶数两种情况分类讨论,结合可得出实数的取值范围.【详解】(1),等式两边同时减去得,,且,所以,数列是以为首项,以为公差的等差数列,因此,;(2),,,;(3).当为正奇数时,,,由,得,可得,由于数列为单调递减数列,;当为正偶数时,,,由,得,可得,由于数列为单调递增数列,.因此,实数的取值范围是.【点睛】本题考查利用等差数列的定义证明等差数列,同时也考查了累加法求通项、裂项求和法以及利用数列的单调性求参数,充分利用单调性的定义来求解,考查运算求解能力,属于中等题.20、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,化简得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面积公式得,得到,再利用,即可求解.【详解】(Ⅰ)由题意知,即,由正弦定理,得,①,由余弦定理,得,又因为,所以.(Ⅱ)因为,,由面积公式得,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮门店装修预算方案
- 餐饮门店分红激励方案
- 餐饮部装修方案
- 在线教育平台延时服务费方案
- 制造业安全生产月工作总结
- 物流运输送检监控方案
- 影视后期制作团队薪酬激励方案
- 工业园区充电设施建设方案
- 2024年度门卫室监控系统施工合同
- 体育场馆保洁与维护方案
- 广开(含解析)《形式与政策》你所从事的行业和工作《决定》中提出怎样的改革举措
- 2024年共青团团课考试测试题库及答案
- 新版《铁道概论》考试复习试题库(含答案)
- 新版高中物理必做实验目录及器材-(电子版)
- 跟着音乐游中国智慧树知到期末考试答案章节答案2024年广州大学
- 人工智能智慧树知到期末考试答案章节答案2024年复旦大学
- (正式版)SHT 3551-2024 石油化工仪表工程施工及验收规范
- 人教版物理八年级上册第六章质量和密度大单元整体教学设计
- 家长会课件:小学二年级家长会课件主题
- 国开土地利用规划形考任务1-4答案
- 话剧与戏曲的区别
评论
0/150
提交评论