2025届广东省番禺区广东第二师范学院番禺附中高一数学第二学期期末综合测试试题含解析_第1页
2025届广东省番禺区广东第二师范学院番禺附中高一数学第二学期期末综合测试试题含解析_第2页
2025届广东省番禺区广东第二师范学院番禺附中高一数学第二学期期末综合测试试题含解析_第3页
2025届广东省番禺区广东第二师范学院番禺附中高一数学第二学期期末综合测试试题含解析_第4页
2025届广东省番禺区广东第二师范学院番禺附中高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省番禺区广东第二师范学院番禺附中高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,则的值为()A. B. C. D.2.设等差数列的前项和为,若公差,,则的值为()A.65 B.62 C.59 D.563.在平面直角坐标系xOy中,直线的倾斜角为()A. B. C. D.4.若直线与圆相切,则()A. B. C. D.5.在四边形ABCD中,若,则四边形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四边形6.在直三棱柱中,底面为直角三角形,,,是上一动点,则的最小值是()A. B. C. D.7.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是,则下列叙述正确的是()A.,乙比甲成绩稳定B.,甲比乙成绩稳定C.,乙比甲成绩稳定D.,甲比乙成绩稳定8.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.9.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.10.函数f(x)=4A.2kπ+π6C.2kπ+π12二、填空题:本大题共6小题,每小题5分,共30分。11.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.12.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.13.正方体中,分别是的中点,则所成的角的余弦值是__________.14.函数的最小正周期是__________.15.在中,,,,则的面积是__________.16.若则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,单位圆与轴正半轴相交于点,圆上的动点从点出发沿逆时针旋转一周回到点,设(),的面积为(当三点共线时,),与的函数关系如图所示的程序框图.(1)写出程序框图中①②处的函数关系式;(2)若输出的值为,求点的坐标.18.若x,y为正实数,求证:,并说明等号成立的条件.19.已知向量.(1)求与的夹角的余弦值;(2)若向量与垂直,求的值.20.已知,为常数,且,,.(I)若方程有唯一实数根,求函数的解析式.(II)当时,求函数在区间上的最大值与最小值.(III)当时,不等式恒成立,求实数的取值范围.21.记公差不为零的等差数列{an}的前n项和为Sn,已知=2,是与的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据三角函数的定义,即可求解,得到答案.【详解】由题意,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,根据三角函数的定义可得.故选:C.【点睛】本题主要考查了三角的函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与计算能力,属于基础题.2、A【解析】

先求出,再利用等差数列的性质和求和公式可求.【详解】,所以,故选A.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.3、B【解析】

设直线的倾斜角为,,,可得,解得.【详解】设直线的倾斜角为,,.,解得.故选:B.【点睛】本题考查直线的倾斜角与斜率之间的关系、三角函数求值,考查推理能力与计算能力,属于基础题.4、C【解析】

利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.5、D【解析】试题分析:因为,根据向量的三角形法则,有,则可知,故四边形ABCD为平行四边形.考点:向量的三角形法则与向量的平行四边形法则.6、B【解析】

连,沿将展开与在同一个平面内,不难看出的最小值是的连线,由余弦定理即可求解.【详解】解:连,沿将展开与在同一个平面内,如图所示,

连,则的长度就是所求的最小值.

,可得

又,

,

在中,由余弦定理可求得,故选B.【点睛】本题考查棱柱的结构特征,余弦定理的应用,是中档题.7、C【解析】甲的平均成绩,甲的成绩的方差;乙的平均成绩,乙的成绩的方差.∴,乙比甲成绩稳定.故选C.8、A【解析】

设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.9、C【解析】

根据平均数的性质和方差的性质即可得到结果.【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【点睛】本题考查平均数和方差的性质,属基础题.10、D【解析】

解不等式4sin【详解】因为f(x)=4所以4sinxcos解得kπ+π故选:D【点睛】本题主要考查三角函数定义域的求法,考查解三角不等式,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。12、【解析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).13、【解析】

取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【点睛】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.14、;【解析】

利用余弦函数的最小正周期公式即可求解.【详解】因为函数,所以,故答案为:【点睛】本题考查了含余弦函数的最小正周期,需熟记求最小正周期的公式,属于基础题.15、【解析】

计算,等腰三角形计算面积,作底边上的高,计算得到答案.【详解】,过C作于D,则故答案为【点睛】本题考查了三角形面积计算,属于简单题.16、【解析】因为,所以=.故填.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

(1)通过实际问题得到与的函数关系为分段函数,从而判断出程序框填的结果.(2)分类讨论时和时两种情形下的点Q坐标,从而得到答案.【详解】(1)当时,,当时,函数的解析式为,故程序框图中①②处的函数关系式分别是,(2)时,令,即,或,点的坐标为或时,令,即,或,点的坐标为或故点的坐标为【点睛】本题主要考查算法框图,三角函数的运用,意在考查学生的数形结合思想,分析实际问题的能力.18、当且仅当时取等号,证明见解析【解析】

由题意,.【详解】由题意,可得:,当且仅当时取等号,又,当且仅当时取等号,联立解得,故,当且仅当时取等号.【点睛】本题考查了基本不等式的运用,考查了不等式的证明,属于中档题.19、(1);(2)【解析】

(1)分别求出,,,再代入公式求余弦值;(2)由向量互相垂直,得到数量积为0,从而构造出关于的方程,再求的值.【详解】(1),,,∴.(2).若,则,解得.【点睛】本题考查向量数量积公式的应用及两向量垂直求参数的值,考查基本的运算求解能力.20、(I);(II);;(III).【解析】

(I)根据方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根据二次函数的性质,函数的单调性,即可求得求得最值,(III)分离参数,构造函数,求出函数的最值即可.【详解】∵,∴,∴.(I)方程有唯一实数根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、当时,不等式恒成立,即:在区间上恒成立,设,显然函数在区间上是减函数,,当且仅当时,不等式在区间上恒成立,因此.解法二:因为当时,不等式恒成立,所以时,的最小值,当时,在单调递减,恒成立,而,所以时不符合题意.当时,在单调递增,的最小值为,所以,即即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论