




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市成丰学校2025届高一下数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.2.设数列是公差不为零的等差数列,它的前项和为,且、、成等比数列,则等于()A. B. C. D.3.高一某班男生36人,女生24人,现用分层抽样的方法抽取一个容量为的样本,若抽出的女生为12人,则的值为()A.18 B.20 C.30 D.364.在中,内角A,B,C所对的边分别是a,b,c,若,,则的面积是()A. B. C. D.5.函数的图象如图所示,则y的表达式为()A. B.C. D.6.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.7.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2 B.4 C.6 D.88.已知两点,,若直线与线段相交,则实数的取值范围是()A. B.C. D.9.在正四棱柱中,,则点到平面的距离是()A. B. C. D.10.若实数满足约束条件,则的最大值是()A. B.0 C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.设,满足约束条件,则的最小值是______.12.已知都是锐角,,则=_____13.某货船在处看灯塔在北偏东方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达处,看到灯塔在北偏东方向,此时货船到灯塔的距离为______海里.14.若无穷等比数列的各项和等于,则的取值范围是_____.15.正方体中,分别是的中点,则所成的角的余弦值是__________.16.某产品生产厂家的市场部在对4家商场进行调研时,获得该产品售价(单位:元)和销售量(单位:件)之间的四组数据如下表,为决策产品的市场指导价,用最小二乘法求得销售量与售价之间的线性回归方程,那么方程中的值为___________.售价44.55.56销售量1211109三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知一个几何体是由一个直角三角形绕其斜边旋转一周所形成的.若该三角形的周长为12米,三边长由小到大依次为a,b,c,且b恰好为a,c的算术平均数.(1)求a,b,c;(2)若在该几何体的表面涂上一层油漆,且每平方米油漆的造价为5元,求所涂的油漆的价格.18.已知函数.(1)求函数的定义域;(2)当为何值时,等式成立?19.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求的取值范围.20.在平面直角坐标系中,的顶点、,边上的高线所在的直线方程为,边上的中线所在的直线方程为.(1)求点B到直线的距离;(2)求的面积.21.对于三个实数、、,若成立,则称、具有“性质”.(1)试问:①,0是否具有“性质2”;②(),0是否具有“性质4”;(2)若存在及,使得成立,且,1具有“性质2”,求实数的取值范围;(3)设,,,为2019个互不相同的实数,点()均不在函数的图象上,是否存在,且,使得、具有“性质2018”,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,
∴,
故选A.【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.2、A【解析】
设等差数列的公差为,根据得出与的等量关系,即可计算出的值.【详解】设等差数列的公差为,由于、、成等比数列,则有,所以,,化简得,因此,.故选:A.【点睛】本题考查等差数列前项和中基本量的计算,解题的关键就是结合题意得出首项与公差的等量关系,考查计算能力,属于基础题.3、C【解析】
根据分层抽样等比例抽样的特点,进行计算即可.【详解】根据题意,可得,解得.故选:C.【点睛】本题考查分层抽样的等比例抽取的性质,属基础题.4、C【解析】
根据题意,利用余弦定理可得ab,再利用三角形面积计算公式即可得出答案.【详解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;则S△ABCabsinC;故选:C.【点睛】本题考查余弦定理、三角形面积计算公式,关键是利用余弦定理求出ab的值.5、B【解析】
根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.6、D【解析】
根据题意,由不等式的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【点睛】本题考查不等式的性质,对于错误的结论举出反例即可.7、A【解析】
根据平均数相同求出x的值,再根据方差的定义计算即可.【详解】根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均数为=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故选A.【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.8、D【解析】
找出直线与PQ相交的两种临界情况,求斜率即可.【详解】因为直线恒过定点,根据题意,作图如下:直线与线段PQ相交的临界情况分别为直线MP和直线MQ,已知,,由图可知:当直线绕着点M向轴旋转时,其斜率范围为:;当直线与轴重合时,没有斜率;当直线绕着点M从轴至MP旋转时,其斜率范围为:综上所述:,故选:D.【点睛】本题考查直线斜率的计算,直线斜率与倾斜角的关系,属基础题.9、A【解析】
计算的面积,根据可得点到平面的距离.【详解】中,,,∴的边上的高为,∴,设到平面的距离为,则,又,∴,解得.故选A.【点睛】本题涉及点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,也可以根据等积法把点到平面的距离归结为一个容易求得的几何体的体积.10、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标代入目标函数即可得解.【详解】作出可行域如图,设,联立,则,,当直线经过点时,截距取得最小值,取得最大值.故选:C【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据不等式组,画出可行域,数形结合求解即可.【详解】由题可知,可行域如下图所示:容易知:,可得:,结合图像可知,的最小值在处取得,则.故答案为:1.【点睛】本题考查线性规划的基础问题,只需作出可行域,数形结合即可求解.12、【解析】
由已知求出,再由两角差的正弦公式计算.【详解】∵都是锐角,∴,又,∴,,∴.故答案为.【点睛】本题考查两角和与差的正弦公式.考查同角间的三角函数关系.解题关键是角的变换,即.这在三角函数恒等变换中很重要,即解题时要观察“已知角”和“未知角”的关系,根据这个关系选用相应的公式计算.13、【解析】
由题意利用方位角的定义画出示意图,再利用三角形,解出的长度.【详解】解:由题意画出图形为:因为,,所以,又由于某船以每小时18海里的速度向正北方向航行,经过40分钟航行到,所以(海里).在中,利用正弦定理得:,所以;故答案为:.【点睛】此题考查了学生对于题意的正确理解,还考查了利用正弦定理求解三角形及学生的计算能力,属于基础题.14、.【解析】
根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.15、【解析】
取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【点睛】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.16、17.5【解析】
计算,根据回归直线方程必过样本中心点即可求得.【详解】根据表格数据:;,根据回归直线过点,则可得.故答案为:.【点睛】本题考查线性回归直线方程的性质:即回归直线经过样本中心点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3,4,1;(2)元.【解析】
(1)由题意,根据周长、三边关系、勾股定理,a,b,c,建立方程组,解得即可.(2)根据题意,旋转得到的几何体为由底面半径为米,母线长分别为米3和4米的两个圆锥所组成的几何体,计算几何体的表面积再乘单价即可求解.【详解】(1)由题意得,,所以,又,且,二者联立解得,,所以a,b,c的值分别为3,4,1.(2)绕其斜边旋转一周得到的几何体为由底面半径为米,母线长分别为米3和4米的两个圆锥所组成的几何体,故其表面积为平方米.因为每平方米油漆的造价为1元,所以所涂的油漆的价格为元.所涂的油漆的价格为:元.【点睛】本题考查三角形三边关系及旋转体表面积的应用,考查计算能力与空间想象能力,属于基础题.18、(1);(2).【解析】
(1)根据对数的真数大于零,得出,解出该不等式即可得出函数的定义域;(2)根据对数的运算性质可得出关于的方程,解出即可.【详解】(1)由,得,所以,函数定义域为;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合题意,所以,当时,等式成立.【点睛】本题考查了对数运算以及简单的对数方程的求解,解题时不要忽略真数大于零这一条件的限制,考查运算求解能力,属于基础题.19、(1);(2)【解析】
(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论得到解析式,从而可得单调性;分别在、、三种情况下,利用构造不等式,解不等式求得结果.【详解】(1)是的零点由得:当时,,即,解得:当时,,即,解得:的解集为:(2)当时,,即:时,在上恒成立①当时,恒成立符合题意②当时,在上单调递增;在上单调递减;在上单调递增当时,,解得:当时,,解集为当时,,解得:综上所述,的取值范围为:【点睛】本题考查含绝对值不等式的求解、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论的方式去掉绝对值符号,结合函数单调性,将问题转化为所求参数与函数最值之间的大小关系的比较问题,从而构造不等式求得结果.20、(1)(2)【解析】
(1)由题意求得所在直线的斜率再由直线方程点斜式求的方程,然后利用点到直线的距离公式求解;(2)设的坐标,由题意列式求得的坐标,再求出,代入三角形面积公式求解.【详解】(1)由题意,,直线的方程为,即.点到直线的距离;(2)设,则的中点坐标为,则,解得,即,.的面积.【点睛】本题考查点到直线的距离公式的应用,考查点关于直线的对称点的求法,是基础题.21、(1)①具有“性质2”,②不具有“性质4”;(2);(3)存在.【解析】
(1)①根据题意需要判断的真假即可②根据题意判断是否成立即可得出结论;(2)根据具有性质2可求出的范围,由存在性问题成立转化为,根据函数的性质求最值即可求解.【详解】(1)①因为,成立,所以,故,0具有“性质2”②因为,设,则设,对称轴为,所以函数在上单调递减,当时,,所以当时,不恒成立,即不成立,故(),0不具有“性质4”.(2)因为,1具有“性质2”所以化简得解得或.因为存在及,使得成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同转让协议书
- 房屋工程施工承包合同
- 品牌经营场地租赁合同
- 小额贷款公司合同
- 借款居间服务合同借款合同
- 房屋租赁中介委托合同
- 公对公借款合同与公对私借款合同
- 快递运输费用服务合同
- 保洁开荒服务合同
- 送货租车协议合同
- 常见酸碱盐的鉴别
- (正式版)JBT 14449-2024 起重机械焊接工艺评定
- 新安法下怎样做到「尽职免责」
- 2022年10月自考00830现代语言学试题及答案含解析
- 三年级下册数学计算去括号练习400道及答案
- 2024年四川蓬安相如旅游开发有限责任公司招聘笔试参考题库含答案解析
- 统编版语文四年级下册第二单元 快乐读书吧:十万个为什么 整书阅读 课件
- 保安员心理测试题及答案
- YY/T 0489-2023一次性使用无菌引流导管及辅助器械
- 中医药适宜技术颈椎病课件
- 幼小衔接视野下大班幼儿学习习惯的现状调查及养成策略研究
评论
0/150
提交评论