2024年冀教版体积单位间的进率教学设计篇_第1页
2024年冀教版体积单位间的进率教学设计篇_第2页
2024年冀教版体积单位间的进率教学设计篇_第3页
2024年冀教版体积单位间的进率教学设计篇_第4页
2024年冀教版体积单位间的进率教学设计篇_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页2024年冀教版体积单位间的进率教学设计篇

篇一:冀教版体积单位间的进率教学设计

五年级下册数学教案-514体积单位之间的进率我是制作小能手|冀教版

案单五年级数学学科课题体积单位之间的进率项目主题我是制作小能手方案设计人素养目标分解基础素养目标1、学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。

2、会进行简单的体积单位换算,并解决一些简单的实际问题。

核心素养目标会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,理解并掌握体积高级单位与低级单位间的化和聚。提高学生的分析、比较、判断能力及解决实际生活问题的能力。

延展素养目标培养学生认真审题的习惯,使学生在解决实际问题时,获得积极的学习体验,能准确地运用体积单位间的化聚法进行计算,增强学好数学的信心。

教学重难点1、体积单位进率和单位之间的互化。

2、复名数和单名数之间的转化。

云资源运用多媒体课件教学策略解读1、解决生活中实际问题导入新课,既复习了旧知,又搭起了新旧知识的桥梁,激发了学生的学习兴趣,为新课的教学打下基础。

2、利用拼摆、分割等方法利用不同的单位计算同一个正方体体积,从而找出积单位之间的进率。

3、将所学知识应用到解决生活中实际问题中去,加深了学生对所学知识的理解。

教学过程教师教学环节设计+导学预设学生学习任务设计+动态生成预设一、复习准备、情景导入师:同学们请看大屏幕上有什么?(课件演示)师:点动起来形成什么?(课件演示)师:计量线用什么单位?师:常用的长度单位有哪些?师:相邻两个长度单位间的进率是多少?师:继续看大屏幕线动起来形成什么?师:计量面用什么单位?师:常用面积单位有哪些?以及相邻两个面积单位之间的进率是多少?师:再看大屏幕,面动起来形成什么?(课件演示)师:常用的体积单位有哪些呢?(课件演示)师:今天咱们一起研究体积单位之间的进率。

板书:体积单位间的进率。

二、探究体积单位间进率(一)认识立方分米和立方厘米的关系。

师:这是一个棱长1分米的正方体,它的体积是多少呢?(课件出示)师:想一想,它的体积是多少立方厘米呢?师:你有什么方法得到1000?师:把你的的想法和组内同学交流,完成后请坐正。

小组汇报师:哪个组愿意汇报你们的想法1.拼摆(课件演示)师:哪个组还有其它方法?2.分割(课件演示)师:哪个组还有补充?3.底面积乘高课件演示师:同学们太棒了,想出这么多种方法得到了1立方分米=1000立方厘米。

(二)推算立方米和立方分米的关系。

师:你能推算出1立方米等于多少立方分米吗?师:其实同学们直接将验证立方分米、立方厘米之间进率的过程,迁移到了立方米和立方分米之间进率的推导过程中。

师:你能归纳一下体积单位间的进率吗?(三)对比提升师:到现在为止,咱们学习了哪些计量单位呢?整理在这个表格中吧。

师:他们之间的进率为什么不同呢?(课件演示)三、拓展应用1.练习中引出立方米和立方厘米的关系师:今天学习了体积单位间的进率,看看谁的反应速度最快。

师:1立方分米等于多少立方厘米?师:5立方分米等于多少立方厘米?师:10立方分米等于多少立方厘米?继续师:2立方米等于多少立方分米?师:1立方米等于多少立方厘米?师:你怎么得到的呢?2、深化体积单位间换算师:这两个单位你会换算吗?看看谁不仅能做对,还能用算式表达出你的想法。

3.8立方米等于多少立方分米?2400立方厘米等于多少立方分米?说说你是怎么想的师:同学们咱们体积单位间换算的方法陌生吗?师:其实咱们就是把以前学习的单位换算的方迁移到了今天体积单位间进率换算过程。

3、师:现在咱们比一比,谁能又准又快地完成下面各题。

0.3dm³=()cm³2680cm³=()dm³50dm³=()m³4.07m²=()dm²师:做到这道题你有什么感悟?0.14m³=()cm³2m³80dm³=()m³3.96dm³=()dm³()cm³师:做这两道题你有什么?师:复名数与单名数的互化除了要注意是从高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化。

师:同学们太棒了!这么难的单位换算都解决了。

4、师:今天老师准备了丰富的水果大餐奖励你们。

师:谁能找到好办法,划去芒果上大小不同的数。

师:他太棒了,直接找到了矛盾的关键点,快速得到了答案。

5、师:这是同学们在项目实践中制作的玩具收纳箱如果计算它的体积你想知道什么条件?师:给你长、宽、高,计算一下吧。

(师组织学生自己审题,使学生明确包装箱上的尺寸一般就是这个长方体的长、宽、高。再引导学生提出问题:这个牛奶包装箱的体积是多少?最后让学生独立完成并展示。)师:大家认为这位同学的解答怎么样?师:同学们的结果都正确,如果在计算时题目没有要求用什么体积单位或所给的长度单位不统一时,我们可以根据实际需要选择比较合适的单位。大家想一想,针对这一个问题,选用哪个单位比较合适呢?师:立方厘米单位太小,不符合人们的日常习惯,也可以用立方分米作单位,还可以用立方米作单位。

6、师:这是同学们为母亲节制作的礼物盒。

体积尽管够,但由于长宽高的尺寸不够仍然装不下,需要考虑放置方向的问题。

四、全课总结:师:同学们今天你有什么收获呢?生:点。

生:线。

生:长度单位。

生:米、分米、厘米。

生:相邻两个长度单位间的进率是10。

生:面。

生:面积单位。

生:常用面积单位有平方米、平方分米、平方厘米。相邻两个面积单位间的进率是100。

生:体。生:立方米、立方分米、立方厘米。生:棱长为1分米的正方体的体积是1立方分米。生:1000生合作交流想法。生1:用棱长1厘米的小正方体拼成棱长1分米的正方体。每个小正方体的边长是1厘米,它的体积1立方厘米。1行摆10个,摆了10行,摆了10层。发现1立方分米里面含有1000个1立方厘米的小正方体,所以1dm3=1000cm3。10个某10行某10层=1000(个)。生2:把棱长1分米的正方体分成棱长1cm的正方体。1分米某1分米某1分米=1立方分米。10厘米某10厘米某10厘米=1000立方厘米。1立方分米=1立方厘米生3:底面积1平方分米就是100平方厘米1平方分米某1分米=1立方分米。100平方厘米某10厘米=1000立方厘米生:1米某1米某1米=1立方米。10分米某10分米某10分米=1000立方分米。1立方米=1立方分米生:相邻两个体积单位间的进率是1000。

单位名称相邻两个单位之间的进率长度米、分米、厘米十进面积平方米、平方分米、平方厘米百进体积立方米、立方分米、立方厘米千进生1:长度是一条线从一个角度考虑,面积需要从两个角度考虑,体积需要从三个角度考虑。

生2:它们是一维、二维、三维的区别。

生:1立方分米等于1000立方厘米生:5立方分米等于5000立方厘米生:10立方分米等于10000立方厘米师:2立方米等于2000立方分米1m3=1000000cm3生:1m3=1000dm3,1dm3=1000cm3,1000某1000=1000000。

生:1m3=1000dm3高级单位的数乘进率等于低级单位的数所以只要把3.8某1000=3800从而得出:3.8m3=3800dm3生汇报:1000立方厘米=1立方分米低级单位的数除以进率等于高级单位的数,所以只要把2400÷1000=2.4,所以2400cm³=2.4dm3生独立完成,全班汇报说思路。

生1:我把它统一成了立方分米为单位的数找出1400立方厘米与的数大小不同。

生2:1400立方分米与1400立方厘米里肯定有一个是不对的,我把1.4立方米换算出1400立方分米,就找出1400立方厘米是不正确的。

生:长、宽、高。

生1:50某30某40=60000(cm3)。

生2:这位同学列式正确,但60000cm3比较麻烦,所以我最后就把它化成了60dm3。

生3:我的最后结果是0.06m3。

生4:我在计算前先把长度单位换成“分米”或“米”,这样计算时比较方例。5某3某4=60(dm3)。

……生:我认为选用立方分米比较合适。生1:我先算出了体积,比较,礼物盒的体积大能装下。生2:我先算出了礼物盒的高,和礼物的高比小,所以装不下。生:第二种方法对。板书设计体积单位间的进率1立方分米=1000立方米1立方米=1000立方分米1立方米=1000000立方厘米

篇二:冀教版体积单位间的进率教学设计

《体积单位间的进率》教学设计

一、教学内容

课本P46~47例3、例4。

二、教学目标

1.知识与技能

使学生理解掌握体积单位间的进率,会利用进率进行转化。

2.过程与方法

通过让学生经历推导体积单位间进率的过程,培养学生的逻辑思维能力及利用所学知识解决实际问题的能力。

3.情感、态度与价值观

使学生形成初步的空间观念,体验所学知识与现实生活的联系,能运用所学知识解决生活中简单的问题,从中获得价值体验。

三、重点难点

1.教学重点

体积单位间的进率及转化。

2.教学难点

推导体积单位间的进率。

四、教学用具

自制课件、学具。

五、教学设计

(一)复习准备

1.体积单位有哪些?什么是1立方米,1立方分米,1立方厘米?

2.长度单位有哪些?

3.面积单位有哪些?我们是怎样推导出来的?

(二)探究新知

1.体积单位间的进率及转化。

(1)出示1立方米,1立方分米,1立方厘米的正方体。

按照面积单位进率的推导方法,让学生自己推导体积单位间的进率,小组讨论后汇报。

(2)汇报结果。

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方米=1000000立方厘米

(3)因为1米=10分米,棱长是1米的正方体也可以看成棱长是10分米的正方体,它的体积是10×10×10=1000立方分米,所以1立方米=1000立方分米。

(4)小结:相邻两个体积单位间的进率是1000。

(5)填空。

①8立方米=()立方分米

②10.4立方分米=()立方厘米

③400立方分米=()立方米

④132500立方厘米=()立方米

2.长度单位、面积单位、体积单位的比较。

计量长度(边长、棱长、周长)要用长度单位,计量面积(平面图形面积、表面积)要用面积单位,计量体积要用体积单位。

[通过让学生自己推导体积单位间进率的过程,培养学生的逻辑思维能力及利用所学知识解决实际问题的能力。]

(三)巩固练习

1.在括号里填上合适的单位。

(1)一个碳素墨水盒的体积大约是144()。

(2)讲台桌的体积大约是0.6()。

(3)数学书封面的面积大约是3.15()。

(4)一本《新华字典》的体积大约是0.35()。

2.棱长1分米的正方体,体积是()立方分米;也可以看成棱长是()厘米,体积是()立方厘米。()

5立方分米=()立方厘米

7立方分米=()立方厘米

3000立方厘米=()立方分米

10000立方厘米=()立方分米

同理:棱长1米的正方体,体积是()立方米;也可以看成棱长是()分米,体积是()立方分米。()

4立方米=()立方分米

2.7立方米=()立方分米

2400立方分米=()立方米

12500立方分米=()立方米

3.6立方分米=()立方厘米

3.一根木料长2米,它的横截面是一个边长为10厘米的正方形。120根这样的木料的体积是多少立方分米?合多少立方米?

4.一块长方体的钢板,长2.5米,宽1.6米,厚0.02米,它的体积是多少立方分米?每立方分米的钢重7.8千克,这块钢板的质量是多少千克?

(四)全课总结

这节课你有什么收获?有什么感受?

(五)板书设计

篇三:冀教版体积单位间的进率教学设计

1立方分米1000立方厘米用算一算的方法推断出1立方分米1000立方厘米2仿照此方法探究1立方米和1立方分米之间的进率关系学生在小组内展开活动然后全班交流总结课件演示用体积是1立方分米的正方体摆成体积是1立方米的正方体1立方米里面包含有个1立方分米呢

《体积单位间的进率及名数的换算》教学设计

一、教学内容

二、教学目标

1.通过体积单位之间的进率的推导,使学生掌握体积单位之间的进率,并会进行

名数的改写。

2.使学生学会用名数的改写解决一些简单的实际问题。

3.培养学生根据具体情况灵活应用不同的单位进行计算的能力。

三、教学重点、难点

重点:体积单位间进率的推导过程及名数的改写

难点:在解决问题中,自觉的进行单位变换使单位的运用更为合理。

四、教学准备

教学课件、棱长是1分米的正方体模型,棱长是1厘米的正方体模型。

五、教学过程

(一)复习导入

(1)我们平时在测量物体时常用的长度单位有哪些?

分米

厘米(生回答)

相邻的两个长度单位间的进率是多少?(生回答)

(2)我们平时在测量物体时常用的面积单位有哪些?

平方米平方分米平方厘米(生回答)

相邻的两个面积单位间的进率是多少?(生回答)

(3)我们平时在测量物体时常用的体积单位有哪些?

立方米立方分米立方厘米(生回答)

相邻的两个体积单位间的进率是多少?(生回答)

(4)填一填

A.棱长是1cm的正方体,体积是(

)。

B.棱长是1dm的正方体,体积是(

)。

C.棱长是()的正方体,体积是1m3。

(二)探究新知(1)下图是一个棱长为1dm的正方体,体积是1dm3。(出示棱长是1dm的正方体模型教具),想一想,它的体积是多少立方厘米呢?(请同学们大胆的猜一猜)(学生在小组内展开活动,用摆一摆、拼一拼、切一切、算一算、比一比等各种方法试一试!然后全班交流汇总结)课件演示用体积是1立方厘米的正方体摆成体积是1立方分米的正方体1立方分米里面包含有()个1立方厘米呢?得出结论:1立方分米=1000立方厘米用算一算的方法推断出1立方分米=1000立方厘米(2)仿照此方法,探究1立方米和1立方分米之间的进率关系

(学生在小组内展开活动,然后全班交流总结)

课件演示用体积是1立方分米的正方体摆成体积是1立方米的正方体

1立方米里面包含有()个1立方分米呢?

得出结论:1立方米=1000立方分米

用算一算的方法推断出1立方米=1000立方分米

(3)整理长度、面积、体积的进率表格,沟通知识之间的联系

相邻的长度单位间的进率是10;

相邻的面积单位间的进率是100;

相邻的体积单位间的进率是1000。

(4)出示例3:

3.8m3是多少立方分米?

2400cm3是多少立方分米?

学生试做后交流汇报。引导交流换算的方法和理由。

引导小结:高级单位变为低级单位:

高级单位的数×进率

低级单位变为高级单位:

低级单位的数÷进率

(5)巩固练习

1.02m3=

dm3960dm3=

m3

6270cm3=

dm323dm3=

cm3

36000cm3=

dm38.63m2=

dm2

(6)老师这有一个包装箱(课件出示)

师:你能从包装箱上得到哪些数学信息呢?

尺寸:50×30×40,表示箱子的长、宽、高分别是50cm、30cm、40cm。

师:这个牛奶包装箱的体积是多少?

学生独立完成后交流汇报。

(7)要砌一道长15m、厚24cm、高3m的砖墙。如果每立方米用砖525块,一

共要用砖多少块?

(三)课堂总结

师:通过本节课学习,你都有什么收获?

体积的单位(立方米、立方分米、立方厘米)

体积单位间的进率:1立方米=1000立方分米

1立方分米=1000立方厘米

1立方米=1000000立方厘米

高级单位转化为低级单位时,用高级单位的数乘进率。

低级单位转化为高级单位时,用低级单位的数除以进率。

解决问题时,要注意单位名称是否统一,再计算可以减少错误。

六、课后反思

篇四:冀教版体积单位间的进率教学设计

《体积单位间的进率》教学设计

教学目标:知识与技能:1、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。2、提高学生的分析、比较、判断能力及解决实际生活问题的能力。过程与方法:1、使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。2、会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。情感态度价值观:在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。重难点:重点:体积单位的进率。难点:体积单位的进率的化聚。教学准备:棱长是1分米的正方体模型,课件。教学过程一、激情导入1、复习提问:同学们,我们学过的常用的长度单位有哪些?相邻的两个单位间的进率是多少?生回顾回答师板书:1米=10分米1分米=10厘米常用的面积单位有哪些?相邻的两个单位间的进率是多少?指名回答师板书:1米2=100分米21分米2=100厘米2

2、我们复习了长度单位和面积单位的进率,那你知道每相邻两个体积单位间的进率是多少吗?(生回顾回答:每相邻两个长度单位之间的进率是10,每相邻两个面积单位之间的进率是100。)今天我们就来学习体积单位间的进率。(板书课题)二、民主导课(一)教学例2

1、出示棱长是1分米的正方体模型教具,问:当正方体的棱长是1分米时,它的体积是多少?(生看模型回答:1立方分米)

2、正方体的棱长是1分米,可以看作是10厘米吗?它的体积又是多少?(引导生动笔计算,部分学生可能回答:因为1分米=10厘米,所以体积为10×10×10=1000立方厘米)

3、1立方分米和1000立方厘米是同一个正方体的体积吗?(生回答:是)由此我们可以得出1立方分米等于多少立方厘米吗?(生回答:1000,师板书1分米3=1000厘米3)。4、出示正方体模型,引导:如果把这个模型的棱长理解为1米,体积是多少?(生看模型回答:1立方米)

5、现在吧1米看成10分米,体积是多少?这说明什么?生回答:1000立方分米,说明1米=1000分米

6、由此我们可以得出相邻的体积单位间的进率是多少?(1000)7、指黑板板书,让学生看着黑板和老师一起口述长度单位、面积单位、体积单位的名称及它们之间的进率。8、生独立填写46页表格,指名汇报。9、出示:米=()分米分米2=()厘米2教师:这是我们熟悉的题目,大家一起回忆一下它们的算法。(要求生口述并说出原因)(二)教学例3、例4三、全课总结今天这节课你有什么收获?体积单位间的进率

1立方分米=1000立方厘米1立方米=1000立方分米高级体积单位的名数×进率→相邻的低级体积单位的名数低级体积单位的名数÷进率→相邻的高级体积单位的名数教学反思这部分内容是在学生已经学习了长方体和正方体的体积计算方法,并且已经熟练掌握长方体和正方体的体积计算方法后让学生对各体积单位间的进率能够进行相互转化而设立的。通过本节课内容的传授,我有以下几点心得和反思:1从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成2学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。3突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。4巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习、解决实际问题等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。需要改进的地方1、单位的统一,让学生自觉养成习惯。

2、平方、立方加强区别,不要让学生形成一种刚学了体积单位间的进率,受惯性思维的影响,急于求成出现错误。

3、课堂练习要给学生充分的时间,设计的习题要有针对性,层次性。要让学生在巩固知识的基础上,获得良好的作业习惯,提高作业的正确率,同时发展学生的能力。

篇五:冀教版体积单位间的进率教学设计

《体积单位间的进率》教学设计

教学目标:1.根据正方体体积的计算方法,在教师引导下,推导出1dm3=1000cm3,在此基础上,通过观察、比较、分析,用类推的思路自主推导出其他的相邻体积单位之间的进率。2.通过独立填表,小组交流,全班反馈,将长度、面积、体积相邻两个单位的进率整理成表,促动知识系统化。3.借助已有知识经验,使用迁移类推的学习方法,自主归纳总结出体积单位间名数换算的方法,并能应用解决实际问题。教学重点:体积单位间进率的推导过程及名数的改写教学难点:在解决问题中,自觉的实行单位变换使单位的使用更为合理。教学准备:课件、棱长是1dm的正方体模型,棱长是1cm的正方体模型。教学过程:(一)“开心一读”,激趣揭题:1、开心一读,修改单位:今天早上,我从2平方厘米的床上爬起来,穿好衣服,便拿起17米长的牙刷,挤出1立方分米的牙膏开始刷牙,不知不觉中已经过了20小时。吃完早餐后,我背起书包,来到了56平方分米的教室,开启一天的学习。2、小结:计量单位各不同,类型确定要分清;大小选择须合理,不闹笑话头脑清。3、揭题:完善表格。猜测体积单位间的进率是多少?你能试着说一说为什么是1000吗?

单位名称

相邻两个单位间的进率

长度

面积

体积

师:大家已经会实行长度单位和面积单位不同名数的换算,并且理解了常见的体积单位,每相邻两个体积单位之间的进率是多少吗?这节课我们就来研究。(板书课题“体积单位间的进率”)

(二)观察演示,探究新知(1)探究体积单位之间的进率出例如2:老师这有一个棱长为1dm的正方体(出示棱长是1dm的正方体模型教具),体积是1dm3。想一想:它的体积是多少立方厘米呢?①理解题意,各抒己见师:请同学们仔细读题,你得到了哪些信息?你准备怎样解决这个问题?预设1:将1dm换算成10cm实行计算。预设2:或先求底面积,再换算单位。②统一理解,发现进率师:就像刚刚同学们所说的,我们能够把棱长为1dm看作棱长10cm,由正方体体积的计算公式算出体积是1000cm3。在计算体积时,我们还能够用“底面积×高”,先算出底面积是1dm2,即100cm2,高10cm,所以100×10也得出体积是1000cm3。师:这里的体积是1000cm3的正方体和刚刚的体积是1dm3的正

方体是同一个正方体吗?师:你有什么发现?得出结论:1dm3=1000cm3③小组探究1m3和1dm3之间的进率关系师:仿照此方法,下面以四人小组为单位,探究1m3和1dm3之

间的进率关系。(学生在小组内展开活动,然后全班交流汇报,归纳小结)④课件演示并小结师:(边演示边总结)这是一个棱长为1dm的正方体,它的体

积是1dm3,我们也能够把它看作是边长为10cm的正方体,根据正方体的体积公式Va3,能够算出正方形的体积是1000cm3,所以1dm3=1000cm3;或者根据正方体的体积公式VSh,能够先算出底面积是1dm2,即100cm2,高10cm,所以100×10也得出体积是1000cm3,所以1dm3=1000cm3。

(2)完善长度、面积、体积的进率表格,沟通知识之间的联系①同桌合作,整理表格师:在本单元,我们经常会用到的是相关于长度、面积、体积的计量单位,相关于长度、面积和体积,具体的都有哪些呢?请同桌两人共同梳理,并整理成表。②展示交流③归纳小结师:从同学们整理的表格中,我们能够清晰的看到:相邻的长度单位间的进率是10;相邻的面积单位间的进率是100;相邻的体积单位间的进率是1000。(3)体积单位的实际应用

师:理解了体积单位之间的进率,下面利用它们解决一些问题。

出例如3:

3.8m3是多少立方分米?

2400cm3是多少立方分米?

学生试做后交流汇报。

交流汇报中,重在引导交流换算的方法和理由。

引导小结:体积单位名数的换算与以前学习的长度、面积单位名

数的换算方法基本相同,仅仅体积相邻单位间的进率是1000。

师:在日常生活中大家有没有注意到包装箱上的尺寸?老师这有

一个包装箱(课件出示)

师:你能从包装箱上得到哪些数学信息呢?

尺寸:50×30×40,表示箱子的长、宽、高分别是50cm、30cm、

40cm。

师:这个牛奶包装箱的体积是多少?

学生独立完成后交流汇报。

师:对计算的结果你觉得需要处理吗?

引导换算成较大的体积单位更适宜。

三、巩固练习,提升水平

(1)第35页的做一做第1题

3.5dm3=()cm3

700dm3=()m3

0.25m3=()cm3

……

(2)要砌一道长15m、厚24cm、高3m的砖墙。假设每立

方米用砖525块,一共要用砖多少块?

(2))课堂总结

师:通过本节课学习,你都有什么收获?

引导小结:知道了体积单位之间的进率;会应用体积单位之间的

进率实行体积单位名数的改写,并在实际问题中能自觉的实行体积单

位名数的改写,并准确的解决实际问题。

(四)课堂检测

1.填空1.02m3=(6270cm2=(8.63m2=(

)dm3)dm2)dm2

960dm3=(

)m3

36000cm3=(

)dm3

23m3=(

)cm3

2.如右图所示,这个箱子里面装着小包牛奶,长、宽、高分别是

60mm、40mm、120mm。这个箱子能够装多少盒牛奶?

篇六:冀教版体积单位间的进率教学设计

《体积单位间的进率》教学设计(共3篇)

《体积单位间的进率》教学设计(共3篇)由作者精心推荐,作者希望对你的学习工作能带来参考借鉴作用。

第1篇:《体积单位间的进率》教学设计[教学目标]1、了解并掌握体积单位间的进率。2、理解并掌握体积高级单位与低级单位间的化和聚。3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。[教学重点、难点]:体积单位间的进率和单位之间的互化[教学过程]一、导入1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。3、思考回答:你觉得他的如何?有什么需要补充的?如何进行单位间的互化?4、猜想今天我们学习的相邻体积单位间的进率可能是多少?二、自主探究、学习新知(一)探究立方分米与立方厘米间的进率1、指导学生分组进行探究,①棱长1分米的正方体的体积是多少?②棱长10厘米的正方体的体积是多少?③1立方分米与1000立方厘米,哪个大?为什么?2、课件:①教师1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,

供学生观察。②让学生可以观察分析,从而为得出结论感官上的支持。3、交流学习结果,分组汇报:因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米

的正方体。1分米×1分米×1分米=1立方分米10厘米×10厘米×10厘米=1000立方厘米所以:1立方分米=1000立方厘米4、让学生在回顾一下思维的过程,再说说自己的理解。a、一个棱长1分米的正方体,体积1×1×1=1立方分米,这个正方体的棱长

也可以想成10厘米,体积10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。

b、1立方分米的正方体,每层有10×10=100(个)1立方厘米的小正方体,10层有100×10=1000(个),所以是1000立方厘米。

学生讨论:一个棱长1分米的正方体,体积1×1×1=1立方分米,这个正方体的棱长也可以想成10厘米,体积10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。

教师课件演示:1立方分米的教具,每层有10×10=100(个)1立方厘米的小正方体,10层有100×10=1000(个),所以是1000立方厘米。

(二)独立探究立方米与立方分米之间的进率1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)2、学生自己尝试解决问题3、交流各自的思维过程:棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)

4、:相邻的两个体积单位之间的进率是1000。5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

篇七:冀教版体积单位间的进率教学设计

《体积单位之间的进率》教案优秀3篇

教学过程篇一一、导入1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。3、思考回答:你觉得他的整理如何?有什么需要补充的?如何进行单位间的互化?4、猜想今天我们学习的`相邻体积单位间的进率可能是多少?二、自主探究、学习新知(一)探究立方分米与立方厘米间的进率1、指导学生分组进行探究,①棱长1分米的正方体的体积是多少?②棱长10厘米的正方体的体积是多少?③1立方分米与1000立方厘米,哪个大?为什么?2、课件提供:①教师提供1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,供学生观察。②让学生可以观察分析,从而为得出结论提供感官上的支持。3、交流学习结果,分组汇报:因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米某1分米某1分米=1立方分米10厘米某10厘米某10厘米=1000立方厘米所以:1立方分米=1000立方厘米4、让学生在回顾一下思维的过程,再说说自己的理解。a、一个棱长1分米的正方体,体积1某1某1=1立方分米,这个正方体的

棱长也可以想成10厘米,体积10某10某10=1000立方厘米,所以1立方分米=1000立方厘米。

b、1立方分米的正方体,每层有10某10=100(个)1立方厘米的小正方体,10层有100某10=1000(个),所以是1000立方厘米。

学生讨论:一个棱长1分米的正方体,体积1某1某1=1立方分米,这个正方体的棱长也可以想成10厘米,体积10某10某10=1000立方厘米,所以1立方分米=1000立方厘米。

教师课件演示:1立方分米的教具,每层有10某10=100(个)1立方厘米的小正方体,10层有100某10=1000(个),所以是1000立方厘米。

(二)独立探究立方米与立方分米之间的进率1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)2、学生自己尝试解决问题3、交流各自的思维过程:棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米某10分米某10分米=1000立方分米。所以1立方米=1000立方分米(板书)4、小结:相邻的两个体积单位之间的进率是1000。5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?三、解决实际问题,巩固所学方法1、教学例1:3.8立方米是多少立方厘米?2400立方厘米是多少立方分米?(1)学生尝试练习,在书上完成。(2)交流方法:高级单位的数改写成低级单位的数,要乘进率,小数点向

右移动对应的位数;低级单位的数改写成高级单位的数,要除以进率,小数点要向左移动对应的位数。

2、完成47页做一做学生独立作业时。提醒学生要认真审题。请学生说一说相邻两个面积单位的进率是多少。四、全课总结今天的学习中你有什么收获?学到了什么?五、布置课堂作业完成练习八2题。5题教学目标篇二1、了解并掌握体积单位间的进率。2、理解并掌握体积高级单位与低级单位间的化和聚。3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。教学重点、难点]:篇三体积单位间的进率和单位之间的互化

篇八:冀教版体积单位间的进率教学设计

五年级下册数学教案-514体积单位之间的进率|冀教版(2)

《体积单位之间的进率》教学设计教学目标:1、结合具体事例,经历用数据、看图、根据公式等推算体积单位之间进率的过程。

2、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。

3、经历体积单位间进率的推导过程,培养学生的合情推理能力。

教学重点:体积单位间的进率和单位之间的互化。

教学难点:运用解决实际问题。

教学过程:一、复习旧知、激情引入师:常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?生:常用的长度单位有厘米、分米、米,相邻的两个长度单位的进率是10。

师:常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?生:常用的面积单位有平方米、平方分米、平方厘米,相邻的两个面积单位间的进率是100。

师:还记得相邻的两个面积单位间的进率的推导过程吗?生:边长是1米的正方形,面积是1平方米,同时1米=10分米,正方形的面积也可以用10某10=100平方分米来计算。因此我们可以得到1平方米=100平方分米。同样也可以用这种方法得到1平方分米=100平方厘米。

师:常用的体积单位有哪些?你能猜出相邻两个体积单位间的进率是多少吗?二、自主探究、合作交流课件出示例6,求洗衣机包装箱的体积。

师:让学生分别以厘米和分米作单位求包装箱的体积。

学生独立解答,然后小组交流。

三、展示汇报生:80某50某90=360000(立方厘米)生:80厘米=8分米50厘米=5分米90厘米=9分米8某5某9=360(立方分米)生:360000立方厘米和360立方分米有什么关系?为什么?生:360000立方厘米=360立方分米。

师:观察360000立方厘米和360立方分米,想一想1立方分米等于多少立方厘米?生猜:1000.师:你们想验证一下吗?师:拿出一个棱长1分米的正方体模型,让学生求出它的体积是多少?然后用厘米作单位,求出这个正方形的体积。引导可以运用像面积单位间进率的单位转化的方法推导出立方分米和立方厘米之间的进率。

生:棱长1分米的正方体体积是1某1某1=1立方分米棱长10厘米的正方体体积是10某10某10=1000立方厘米。

师:根据它们的体积相等,可以得出怎样的结论?1立方分米=1000立方厘米师:谁来说一说,为什么1立方分米=1000立方厘米?课件展示立方分米和立方厘米之间进率的推导过程。

师:用同样的方法,推导1立方米等于多少立方分米?引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,通过计算得出:1立方米=1000立方分米。

四、巩固练习1、5立方分米=()立方厘米0.24立方米=()立方分米7500立方厘米=()立方分米3020立方厘米=()立方分米2、一块长方体的钢板长2.2米,宽1.5米,厚0.01米。它的体积是多少立方米?合多少立方分米?3、“六一”儿童节前,全市的小学生代表用棱长3cm的正方体塑料拼插积木在广场中央搭起了一面长6cm,高2.7m,厚6cm的

心愿墙,算一算这面墙共用了多少块积木?4、一个长方体和一个正方体的棱长总和相等,已知长方体的长、宽、高分别是6dm、5dm、4dm,那么正方体的棱长是多少分米?它们的体积相等吗?五、总结谈收获。

通过这节课的学习,有什么收获。

六、板书设计:体积单位之间的进率1立方分米=1000立方厘米1立方米=1000立方分米每相邻两个体积单位间的进率是1000.1立方米=1000000立方厘米

篇九:冀教版体积单位间的进率教学设计

探索体积单位间的进率

第5课时:探索体积单位间的进率本课知识前后联系授课时间年月日

教学目标

参考教案探索体积单位之间的进率和单教学重点位之间的互化。探索体积单位之间的进率和单教学难点位之间的互化。情境引入:复习相关旧知1平方分米=100平方厘米的推导过程(1)提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上。”(2)展示学生的推导过程。展示目标:我们也用这种方法来推导1立方分米=1立方米=立方厘米,立方分米。展示目标:情境引入:教学难点教学重点

书写教案

自主探究与小组合作:

自主探究与小组合作:推导1立方分米=1000立方厘米(1)提问:“1立方分米等于多少立方厘米?你们能应用类似的方法推导出来吗?”要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来。

学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。(2)展示推导过程(3)全班归纳总结推导1立方米=1000立方分米(1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米(4)总结相邻两个体积单位间的进率。质疑答疑:关于体积单位之间的进率的问题,你们还有什么问题?专项训练:完成书上的第一题综合训练:书上练一练的2、3、题专项训练:综合训练:课堂小结:质疑答疑:

篇十:冀教版体积单位间的进率教学设计

小学数学五年级下册《体积单位间的进率》教学设计

一、教材分析体积单位间的进率是在学生已经学习了长度单位、面积单位和体积单位间的进率以及掌握了长方体和正方体体积的计算方法的基础上进行教学的。这堂课我设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。二、教学目标通过本节课的教学,主要达到以下目标:1、通过计算、比较、分析、归纳,使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解和掌握相邻的两个体积单位之间的进率是1000的道理。2、会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率,并能正确应用体积单位间的进率进行名数的转化。3、在学习过程中,培养学生比较、分析、概括的能力,提高学生对旧知识的迁移和运用能力.4、使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。三、教学重点与难点教学重点:使学生理解和掌握相邻体积单位间的进率是

1

1000,并能正确地进行体积单位间的互化。教学难点:通过计算、比较、分析、归纳,使学生能探

究出相邻体积单位间的进率是1000。四、教学过程(一)复习铺垫,引入新课1、常用的长度单位有哪些?相邻的两个单位间的进率是

多少?1米=10分米1分米=10厘米2、常用的面积单位有哪些?相邻的两个单位间的进率

是多少?1平方米=100平方分米1平方分米=100平方厘米3、填空,并说明算法和算理。(1)6米=()分米=()厘米5平方米=()平方分米=()平方厘米(2)700厘米=()分米=()米800平方厘米=()平方分米4、我们认识了哪些体积单位?这些相邻体积单位间的

进率各是多少?今天这节课我们就一起来探究这个问题。(板书课题:体积单位之间的进率)板书:立方米立方分米立方厘米(二)探究新知1、推导立方分米和立方厘米间的进率.

2

课件出示:棱长是1分米的正方体的体积是多少?因为1分米=10厘米,如果把棱长1分米改写成10厘米,那么这个正方体的体积又是多少呢?(课件出示:棱长是10厘米的正方体)学生计算:10×10×10=1000(立方厘米)同一个正方体,它的体积可以用1立方分米或者1000立方厘米来表示,说明这两者之间有怎样的关系呢?引导学生比较总结出:1立方分米=1000立方厘米2、推导立方米与立方分米的进率推算1立方米等于多少立方分米?棱长是1米的正方体的体积是1立方米。而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1立方米=1000立方分米。10×10×10=1000(立方分米)板书:1立方米=1000立方分米3、用一句话来概括每相邻两个体积单位间的进率?师生总结:每相邻两个体积单位之间的进率是1000。4、思考:1立方米等于多少立方厘米呢?5、比较相邻长度单位、面积单位、体积单位之间的进率关系6、体积单位的互化从高级单位、低级单位之间的转化是怎样进行的.

3

体积单位间的转化与我们学过的长度单位,面积单位的换算的方法相同.

(1)出示教学例33.8立方米=()立方分米2400立方厘米=()立方米看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?对比例3的这两道小题有什么不同?高级单位→低级单位,用进率×高级单位的数低级单位→高级单位,用低级单位的数÷进率教师小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。(2)教学例4课件出示:一个牛奶包装箱上的尺寸:50×30×40。这个牛奶包装箱的体积是多少立方米?(箱上的尺寸一般是长、宽、高,单位:厘米)方法一:V=abh=0.5×0。3×0.4=0。06(立方米)方法二:V=abh=50×30×40=60000(立方厘米)=60(立方分米)=0。06(立方米)三、巩固练习

4

1、口答,说出计算过程.

1.02立方米=()立方分米980立方厘米=()

立方分米

68立方分米=()立方厘米2090立方厘米=()

立方分米

0.55立方米=()立方分米8。63立方米=()

立方分米

0。6立方米=()立方分米

1200平方分米=()

平方米

2。8米=()分米

60厘米=()分米

2、一块长方体钢板长2。5米,宽1.6米,厚0。03米.它

的体积是多少立方分米?

四、课堂总结

通过这节课的学习,你有什么收获?

5

篇十一:冀教版体积单位间的进率教学设计

P>第四课时体积单位之间的进率问题

教学内容:课本第63~64页。教学目标:

1、结合具体事例,经历认识体积单位之间进率的过程。2、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。3、在探索体积单位进率的过程中,获得积极的学习体验,增强学好数学的信心。

教学重难点:

1.体积单位进率和单位之间的互化。2.复名数和单名数之间的转化。

教学准备:

课件、投影片,电脑动画软件(或活动投影片)

学具准备:

长方体、或正方体纸盒

教学过程:

(一)谈话导入教师:常用的长度单位有哪些?相邻的两个单元之间的进率是多少?学生口答后老师板书:长度单位设计意图:通过复习,加深学生单位之间的换算。(二)探究新知师:同学们,老师知道同学家都买过洗衣机、电视等电器。谁见过这些电器包装箱上都有哪些信息?生:电器的名称。生:电器的生产厂家。生:箱子的长、宽、高数据。……第三种说法,学生如果说不出来,教师可引导:包装箱的大小有显示吗?设计意图:交流包装箱上的信息,让学生了解生活经验,为学习新知识做铺垫。师:今天,我们就一起研究一个包装箱的问题。请同学们打开书第63页,看一看上面的纸箱,你发现了什么?生:我们发现这是一个洗衣机包装箱,上面写着一个连乘算式,是80×50×90。师:谁来说一说80×50×90表示什么意思?生:这三个数表示的是包装箱的长、宽、高。这三个数表示的是包装箱的长是80厘米,宽是50厘米,高是90厘米。也可以说是包装箱的长是8分米,宽是5分米,高是9分米。第三种情况学生如果说不出,教师可以启发,如:80厘米还可以说是多少?设计意图:让学生自己学会自主计算。师:根据这些数据,你能求出洗衣机包装箱的体积吗?试一试!

1

学生列式计算,教师巡视,了解学生计算情况。师:谁愿意把你的计算过程和结果向大家说一说?生:因为长方体的体积=长×宽×高,我用80×50×90=360000(立方厘米)生:我用8×5×9=360(立方分米)上面两种情况只出现一种,教师引导或参与交流。教师板书出两个算式:80×50×90=360000(立方厘米)8×5×9=360(立方分米)设计意图:给学生创造用自己的方法计算的机会。师:请同学们认真观察这两个算式计算的结果,你发现了什么?生:用的体积单位不一样,计算出的数也不一样。用厘米作单位,计算出来的数就大;用分米作单位,计算出的数就小。生:计算的是同一个包装箱,360000立方厘米等于360立方分米。教师板书:360立方分米=360000立方厘米师:通过计算洗衣机包装箱体积,我们知道360立方分米=360000立方厘米。现在,请同学们想一想,1立方分米等于多少立方厘米。同桌讨论以下。给学生思考的时间。

设计意图:交流、展示不同单位计算的结果,为探索立方厘米和立方分米之间的关系提供素材。师:谁愿意把你的想法和大家说一说呢?生:因为360×1000=360000,所以1立方分米=1000立方厘米。生:棱长1分米的正方体的体积是1×1×1=1(立方分米),因为1分米=10厘米,它的体积也就是10×10×10=1000(立方厘米),所以1立方分米=1000立方厘米。对于第二种推算方法教师要给予表扬。如果学生说不出1立方分米=1000立方厘米,这里不强求。

设计意图:借助课件演示的直观性,让学生体验1立方分米与1000立方厘米的关系。师:现在,请同学们看课件。课件出示一个1立方厘米的小正方体。师:这个小正方体的棱长是1厘米,它的体积是多少?生:1立方厘米。课件出示一排10个小正方体。师:数一数,这个长方体是由几个小正方体组成的?它的体积是多少?生:这个长方体由10个小正方体组成,它的体积是10立方厘米。课件出示10×10小正方体图。师:再看这个长方体,它的体积是多少立方厘米?说一说你是怎样知道的。生:这个长方体的体积是100立方厘米。因为每一排有10个小正方体,有10排,10×10=100。课件出示10×10×10个小正方体的正方体。师:看这个正方体,它的体积是多少立方厘米?说一说你是怎么知道的?给学生一定的观察思考时间。

2

生:这个正方体的体积是1000立方厘米。因为一层是10×10=100个小正方体,

一共有10层,10×10×10=1000,所以这个正方体的体积是1000立方厘米。

学生说,教师用课件演示。

板书:

10×10×10=1000(立方厘米)

师:再来观察这个正方体,谁知道它的棱长是多少?

生:棱长是10厘米。

设计意图:让学生经历独立思考、推算1立方米=1000立方分米的过程。

师:10厘米还可以说是多少?

生:1分米。

师:大家看,这个大正方体的体积可以怎样算?体积是多少?

生1:边长是10厘米,体积是10×10×10=1000(立方厘米)

生2:边长是1分米,体积是1×1×1=1(立方分米)

师:谁知道1立方分米等于多少立方厘米?

生:1立方分米=1000立方厘米

设计意图:给学生提供尝试推想单位间进率的空间,使学生体验数学问题的挑战

性。

师:说一说是怎样推想的?

生:边长1分米的正方体体积是1×1×1=1(立方分米),因为1分米=10厘

米,10×10×10=1000(立方厘米),所以1立方分米=1000立方厘米。

师:我们已经知道1立方分米=1000立方厘米,而且同学们也学会了推算的方

法,你们能推算出1立方米等于多少立方分米吗?试一试!

给学生独立思考和推算的时间。

师:谁愿意把你推算的过程和结果给大家说一说?

学生可能会说:

l棱长1米的正方体,它的体积是1×1×1=1(立方米)。因为1米=10分米,

它的体积是10×10×10=1000(立方分米),所以1立方米=1000立方分米。

多请几个人发言。

板书:

1立方米=1000立方分米

设计意图:在交流表达的过程中,发展学生的数学思维和语言表达能力。

三、巩固新知。

请同学们看“练一练“第1、2、3、4题,比一比看谁填的又快又对!

学生填完后,集体订正,并说一说是怎样想的。

四、达标反馈。

1.在括号里填上适当的数。

410立方分米=()立方米

9.8升=()毫升=()立方分米

3.08立方分米=()立方分米()立方厘米

8760立方厘米=()立方分米()立方厘米

重难疑点,一网打尽。

2.在○里填上“>”“<”或“=”。

45立方分米○4.5立方米1040毫升○1.04升0.072立方米○120升

3.6升○3600立方厘米180平方米○1.8平方分米

3

3.苏通长江大桥上预制吊装的最大构件是长为80米,宽为16米,高为4.5米的长方体混凝土箱梁,这个箱梁的体积是多少立方米?4.一个长方体沙坑的长是80分米,宽是42分米,深是6分米,每立方米沙土重1.75吨,填平这个沙坑共需沙土多少吨?5.在一个长为60厘米,宽为35厘米的长方形铁皮的四角分别截下四个边长为5厘米正方形,然后把剩下的铁皮做成一个无盖的长方体铁皮盒。这个铁皮盒的体积是多少立方厘米?

6.一个无水观赏鱼缸(如图)中放有一块高为28厘米,体积为4200立方厘米的

石块,如果水管以每分钟8立方分米的流量向鱼缸内注水,那么至少需要多长时

间才能将石块完全淹没?

答案:

1.0.4198009.83808760

2.<=<=>

3.5760立方米4.35.28吨

5.6250立方厘米

6.(46×25×28-4200)÷1000÷8=3.5(分钟)

五、课堂小结。

这节课你有什么收获,如果你有什么疑惑的地方可以同学互相讨论,也可以

来问老师。

设计思路:让学生谈收获,也是学生进行反思的过程,培养学生总结知识的

能力,并发现自己不足的地方。

六,布置作业

1450毫米=()升=()立方分米

0.19立方米=()立方分

3000立方厘米=()立方分米=()立方米

7.9立方分米=()

8600平方厘米=()平方分米

980立方分米=()立方

6.1立方分米=()立方厘米

2040毫升=()升。

4.7立方米=()立方分米

3500毫升=()升。

答案:1.45升1.4519030.037.9860.9861002.0447003.5

◆板书设计

80×50×90=360000(立方厘米)

8×5×9=360(立方分米)360立方分米=360000立方厘米

10×10×10=1000(立方厘米)

1立方米=1000立方分米

教学资料包:

1.生活中,计量沙、土、石子等的体积时,常常把“立方米”简称为()。

2.蓝和白的体积=(

)×(

)。

4

3.如果玩一个棱长为2米的正方体土坑,需要挖土(

)方。

5

篇十二:冀教版体积单位间的进率教学设计

P>《体积单位间的进率》教案

《体积单位间的进率》教案

《体积单位间的进率》教案1

教学目标:1、了解并掌握体积单位间的进率。2、理解并掌握体积高级单位与低级单位间的化和聚。3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。重点难点:体积单位间的进率和单位之间的互化教学过程:一、导入1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。3、思考回答:你觉得他的整理如何?有什么需要补充的?如何进行单位间的互化?4、猜想今天我们学习的相邻体积单位间的进率可能是多少?二、自主探究、学习新知(一)探究立方分米与立方厘米间的进率1、指导学生分组进行探究,①棱长1分米的正方体的体积是多少?②棱长10厘米的正方体的体积是多少?

③1立方分米与1000立方厘米,哪个大?为什么?

2、课件提供

①教师提供1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,供学生观察。

②让学生可以观察分析,从而为得出结论提供感官上的支持。

3、交流学习结果,分组汇报

因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米1分米1分米=1立方分米

10厘米10厘米10厘米=1000立方厘米

所以:1立方分米=1000立方厘米

4、让学生在回顾一下思维的过程,再说说自己的理解。

a、一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。

b、1立方分米的正方体,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。

学生讨论:一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。

教师课件演示:1立方分米的教具,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。

(二)独立探究立方米与立方分米之间的进率

1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?

教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)

2、学生自己尝试解决问题

3、交流各自的思维过程

棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米10分米10分米=1000立方分米。

所以1立方米=1000立方分米(板书)

4、小结:相邻的两个体积单位之间的进率是1000。

处?

5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之

三、解决实际问题,巩固所学方法

1、教学例1:3.8立方米是多少立方厘米?

2400立方厘米是多少立方分米?

(1)学生尝试练习,在书上完成。

(2)交流方法:高级单位的数改写成低级单位的数,要乘进率,小数点向右移动对应的位数;低级单位的数改写成高级单位的数,要除以进率,小数点要向左移动对应的位数。

2、完成47页做一做

学生独立作业时。提醒学生要认真审题。请学生说一说相邻两个面积单位的进率是多少。

四、全课总结

今天的学习中你有什么收获?学到了什么?

五、布置课堂作业

完成练习八2题。5题

《体积单位间的进率》教案2

一、教学内容:教科书第31――32页练习七第5――10题。二、教学目标。

1、能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

2、进一步培养学生的分析问题解决问题的能力。

3、激发学生的`数学学习信心。

三、学重点与难点:

题。

能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问

四、教学过程。

(一)复习。

1、谈话:上节课我们认识了体积单位之间的进率,谁能说一说体积单位之间的进率是怎样的?它与面积单位、长度单位有什么不同?

2、这节课我们就继续运用这些知识来解决实际问题。

(二)巩固练习。

1、填空。

(1)300厘米=()分米,4.6米=()分米,

300平方厘米=()平方分米,4.6平方米=()平方分米。

300立方厘米=()立方分米,4.6立方米=()立方分米。

(2)9250立方厘米=()立方分米,50立方分米=()立方米。

(3)9.8升=()立方分米=()毫升,0.5立方米=()立方分米=()升。

2、做练习七的第5题。

(1)学生看图算出两堆木块的体积。

(2)引导学生思考:每堆木块的体积与它右边的容器的容积有什么关系?再来进行推算。

3、做练习七的第6题。

(1)学生独立作业时,再三提醒学生认真审题。

(2)订正时,请学生说一说相邻两个面积单位之间的进率是多少.4、做练习七的第7题。(1)学生独立完成。(2)交流是引导学生注意每一个计算结果的单位写得是否正确。5、做练习七的第8题。(1)学生独立解答,集体订正。(2)引导学生说说怎样想的?6、做练习七的第9题。学生读题后,先集体进行分析,在引导学生独立解答,集体订正。7、做练习七的第10题。学生读题后,引导学生说说从里面量的数据和从外面量的数据分别有什么关系,然后再由学生独立解答,集体订正。(四)能力空间。1、砌一道长24米,宽20米,高3米的砖墙,如果用每块体积的18立方分米的砖来砌,一共要这样的砖多少块?2、每瓶药水50毫升,装瓶,一共有药水多少升?如果有4.5升药水,一共可以装多少瓶?(五)全课。这节课我们学习了哪些内容?你觉得那些地方值得我们引起注意?引导学生进行。(六)作业。1、课前思考:(1)认真学习潘老师与孙老师的备课,与孙老师有同感,也想补充复名数改写。

(2)第二,在完成教材上内容的同时,可结合《天天练》上的习题进行讲评,因为教材上这课内容中单位换算的习题不多,在《天天练》倒有不少相应的实际问题中有这方面的训练。

(3)第三,在教学新授的同时,边利用自习课时间复习前面的知识,发现不少学生教材上的内容也有遗忘。

2、补充题:

3时20分=()分,2.41吨=()吨()干克,3080克=()千克()克,5分40秒=()秒。

3千克4克=()千克,1840千克=()吨()千克,8.32平方米=()平方米()平方分米。

7.004立方分米=()立方分米()立方厘米。

学生对书上的练习掌握的不错,作业的反馈情况也比较理想,就是对于补充的复名数与单名数之间的改写掌握的还不够。打算在自习课上再加强训练。

3、课后反思:

今天的数学课是一节练习课,针对体积单位换算和体积、表面积计算进行了综合练习,主要完成了教材上的练习。分析一下学生的练习情况:

(1)类似教材第32页上第7题这种已知长方体的长、宽、高或正方体棱长求表面积和体积的题目,是最基本的,所以每位学生都能正确列出算式来计算表面积或体积,但计算过程中如果涉及到小数乘法错误就较多。

(2)教材第8、9、10题涉及到表面积、体积和容积的计算,大部分学生也能在理解题目意思的基础上正确列出算式进行解答,但计算的正确率仍有待提高,还有少数学生不会分析题中要求解决的问题是计算表面积还是体积,以及如何根据题中的信息来正确列式。

(3)题目中如有些数据的单位名称不一致,学生往往置之不理,把它们当成单位是一样的来计算。

练。

针对这些情况,在后面的单元复习课中要加强指导和相应的练习进行训

由于前面补充了不少长正方体表面积与体积的习题,自认为教材上的习题对学生来说比较简单,没有想到独立作业中,学生的正确率不高。

4、存在问题:

(1)部分学生将生活问题转化成数学问题有困难,个别学生需要老师的帮助才能转化,独立思考根本不行。

(2)思考方法正确了,小数乘法计算不过关。

《体积单位间的进率》教案3

教学目标1、了解并掌握体积单位间的进率。2、理解并掌握体积高级单位与低级单位间的化和聚。3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。教学重点体积单位进率和单位之间的互化。教学难点复名数和单名数之间的转化。教学过程一、复习准备。1、教师提问:(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?板书:长度单位1米=10分米1分米=10厘米厘米(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?板书:面积单位1平方米=100平方分米

1平方分米=100平方厘米平方厘米2、口答填空,并说明算法和算理。(1)4米=()分米=()厘米算法:进率×高级单位的数(2)500厘米=()分米=()米算法:低级单位的数÷进率3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。(板书课题:体积单位间的进率)二、学习新课。(一)认识体积单位间的进率1、认识立方分米和立方厘米的关系。(1)指导学生自学。出示自学提纲:A、棱长是1分米的正方体的体积是多少?B、棱长是10厘米的正方体的体积是多少?C、1立方分米与1000立方厘米哪个大?为什么?(2)学生分组汇报。教师演示动画“体积单位间的进率1”因为1分米=10厘米,所以棱长是1分米的正方体也可看作棱长是10厘米的正方体。1分米×1分米×1分米=1(立方分米)10厘米×10厘米×10厘米=1000(立方厘米)(3)板书:1立方分米=1000立方厘米2、推导立方米与立方分米的关系。(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?

用什么方法可以验证你的想法是否正确呢?

(学生分组讨论,汇报)

(2)(演示动画“体积单位间的进率2”)

棱长是1米的正方体的体积是1立方米。而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体。

板书:1立方米=1000立方分米

(3)思考:1立方米等于多少立方厘米呢?

3、小结:相邻的两个体积单位间的进率是1000。

处?

4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同

(名称、进率两方面。)

(二)体积单位的互化。(演示课件“体积单位间的进率”)

1、出示例3:8立方米、0.54立方米各是多少立方分米?

8立方米=()立方分米

0.54立方米=()立方分米

教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?

想:因为1立方米=1000立方分米,8立方米有8个1000立方分米

列式:1000×8=8000,填8000

(第2题同上理)1000×0.54=540,填540

2、出示例4:3400立方厘米、96立方厘米各是多少立方分米?

3400立方厘米=()立方分米

96立方厘米=()立方分米

教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理。

想:因为1000立方厘米为1立方分米,3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:3400÷1000=3.4,填3.4

(第2题同上理)96÷1000=0.096填0.0963、教师:请对比例3,例4,说一说这两道题有什么不同?板书:(例3下面)高级单位→低级单位,用进率×高级单位的数。(例4下面)低级单位→高级单位,用低级单位的数÷进率。4、教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同。)(三)练习。1、2立方米80立方分米=()立方米提示:哪部分需要转化?没转化的部分如何办?板书:2+80÷1000=2+0.08=2.08,填2.082、5.34立方分米=()立方分米()立方厘米提示:哪部分可以直接填?哪部分需要转化?板书:1000×0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论