中考数学专题复习教学案一次函数的应用_第1页
中考数学专题复习教学案一次函数的应用_第2页
中考数学专题复习教学案一次函数的应用_第3页
中考数学专题复习教学案一次函数的应用_第4页
中考数学专题复习教学案一次函数的应用_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一次函数的应用◆【课前热身】1.在平面直角坐标系中,函数的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟 B.15分钟 C.25分钟 D.27分钟3.某航空公司规定,旅客乘机所携带行李的质量(kg)与其运费(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kgB.25kgC.28kgD.30kg4.一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【参考答案】DBBB◆【考点聚焦】一次函数〖知识点〗正比例函数及其图像、一次函数及其图像〖大纲要求〗1.理解正比例函数、一次函数的概念;2.理解正比例函数、一次函数的性质;3.会画出它们的图像;4.会用待定系数法求正比例、一次函数的解析式.◆【备考兵法】〖考查重点与常见题型〗考查正比例函数、一次函数的定义、性质,有关试题常出现在选择题中;综合考查正比例、一次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题;考查用待定系数法求正比例、一次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题;利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点.一次函数的图像与性质直线y=kx+b(k≠0)中,k和b决定着直线的位置及增减性,当k>0时,y随x的增大而增大,此时若b>0,则直线y=kx+b经过第一,二,三象限;若b<0,则直线y=kx+b经过第一,三,四象限,当k<0时,y随x的增大而减小,此时当b>0时,直线y=kx+b经过第一,二,四象限;当b<0时,直线y=kx+b经过第二,三,四象限.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)个单位得到一次函数y=kx+b±m;一次函数y=kx+b沿着x轴向左(“+”)、右(“-”)平移n(n>0)个单位得到一次函数y=k(x±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同步进行的.只不过是一种情况,两种表示罢了;直线y=kx+b与x轴交点为(-,0),与y轴交点为(0,b),且这两个交点与坐标原点构成的三角形面积为S△=·│-│·│b│.◆【考点链接】一次函数的性质k>0直线上升y随x的增大而;k<0直线下降y随x的增大而.◆【典例精析】例1如图,直线与轴交于点(-4,0),则>0时,的取值范围是()A.>-4B.>0C.<-4D.<0【分析】考查一次函数图像【答案】A例2(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.【答案】解:(1)(2)即:y因为提价前包房费总收入为100×100=10000.当x=50时,可获最大包房收入11250元,因为11250>10000.又因为每次提价为20元,所以每间包房晚餐应提高40元或60元.【点评】本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.建立函数模型解决实际问题例3(2009年江苏省)某加油站五月份营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)【答案】解法一:(1)根据题意,当销售利润为4万元,销售量为(万升).答:销售量为4万升时销售利润为4万元.(2)点的坐标为,从13日到15日利润为(万元),所以销售量为(万升),所以点的坐标为.设线段所对应的函数关系式为,则解得线段所对应的函数关系式为.从15日到31日销售5万升,利润为(万元).本月销售该油品的利润为(万元),所以点的坐标为.设线段所对应的函数关系式为,则解得所以线段所对应的函数关系式为.(3)线段.解法二:(1)根据题意,线段所对应的函数关系式为,即.当时,.答:销售量为4万升时,销售利润为4万元.(2)根据题意,线段对应的函数关系式为,即.把代入,得,所以点的坐标为.截止到15日进油时的库存量为(万升).当销售量大于5万升时,即线段所对应的销售关系中,每升油的成本价(元).所以,线段所对应的函数关系为.(3)线段.【点评】本题提供了一个与生活实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.◆【迎考精练】一、选择题1.(2009年黑龙江大兴安岭)一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量与时间之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是( )A.乙>甲 B. 丙>甲 C.甲>乙 D.丙>乙2.(2009年贵州黔东南州)如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD,下列说法正确的是()A.乙比甲先到终点B.乙测试的速度随时间增加而增大C.比赛进行到29.4秒时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快3.(2009年重庆江津区)已知一次函数的大致图像为()ABCD4.(2009年湖南益阳)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米离家时间(分钟)离家时间(分钟)离家的距离(米)101520200010004题图O5.(2009年湖北宜昌)由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是().A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1200万米36.(2009年湖南怀化)小敏家距学校米,某天小敏从家里出发骑自行车上学,开始她以每分钟米的速度匀速行驶了米,遇到交通堵塞,耽搁了分钟,然后以每分钟米的速度匀速前进一直到学校,你认为小敏离家的距离与时间之间的函数图象大致是()7.(2009年河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()取相反数×取相反数×2+47题图输入x输出yOyx-2-

4ADCBO42yO2-

4yxO4-

2yxxx8.(2009年湖北鄂州)如图,直线AB:y=x+1分别与x轴、y轴交于点A.点B,直线CD:y=x+b分别与x轴、y轴交于点C.点D.直线AB与CD相交于点P,已知=4,则点P的坐标是()A.(3,) B.(8,5) C.(4,3)D.(,)x12OyABC9.(2009年浙江宁波)如图,点A.B.C在一次函数的图象上,它们的横坐标依次为,1,2,分别过这些点作x12OyABCA.1 B.3 C. D.二、填空题1.(2009年福建宁德)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=.2.(2009年湖北恩施)我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达___________公里处.10200102001000s(米)t(分)第3题图1246810369101213.60xy2题3.(2009年辽宁朝阳)如图是小明从学校到家里行进的路程(米)与时间(分)的函数图象.观察图象,从中得到如下信息:学校离小明家1000米;小明用了20分钟到家;小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走的快,其中正确的有___________(填序号).4.(2009年青海)如图4,函数与的图象交于A、B两点,过点A作AC垂直于轴,垂足为C,则的面积为.OAOACBxy4题图45.(2009年广东梅州)星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.y(千米)y(千米)t(分)312725题图7O根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米;(2)小明在图书馆看书的时间为___________小时;(3)小明去图书馆时的速度是______________千米/小时.三、解答题1.(2009年河南省)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.2.(2009年湖南衡阳)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为km,乙、丙两地之间的距离为km; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.2·2·4·6·8·S(km)20t(h)AB3.(2009年陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.4.(2009年黑龙江大兴安岭)邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离(千米)和小王从县城出发后所用的时间(分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A村到县城共用多长时间?5.(2009年广西南宁)南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价(元)与铺设面积的函数关系如图12所示;乙工程队铺设广场砖的造价(元)与铺设面积满足函数关系式:.(1)根据图12写出甲工程队铺设广场砖的造价(元)与铺设面积的函数关系式;(2)如果狮山公园铺设广场砖的面积为,那么公园应选择哪个工程队施工更合算?图12y图12y元480004800028000050010006.(2009年浙江丽水)绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台)23201900售价(元/台)24201980(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?y(立方米)x(小时)100008000200000.510.5y(立方米)x(小时)100008000200000.510.5(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当时,求储气罐中的储气量(立方米)与时间(小时)的函数解析式;(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.8.(2009年湖北宜昌)【实际背景】 预警方案确定:设.如果当月W<6,则下个月要采取措施防止“猪贱伤农”.【数据收集】今年2月~5月玉米、猪肉价格统计表月份2345玉米价格(元/500克)0.70.80.91猪肉价格(元/500克)7.5m6.256【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a,则到7月时只用5.5元就可以买到500克猪肉和500克玉米.请你预测8月时是否要采取措施防止“猪贱伤农”..(2009年河北省)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)裁法一裁法二9题图609题图60404015030单位:cmABBA型板材块数120B型板材块数2mn设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A.B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?10.(2009年山东潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.11.(2009年黑龙江牡丹江)甲、乙两车同时从地出发,以各自的速度匀速向地行驶.甲车先到达地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离(千米)与乙车行驶时间(小时)之间的函数图象.(1)请将图中的()内填上正确的值,并直接写出甲车从到的行驶速度;(2)求从甲车返回到与乙车相遇过程中与之间的函数关系式,并写出自变量的取值范围.(3)求出甲车返回时行驶速度及、两地的距离.12.(2009年黑龙江牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)22002600售价(元/台)28003000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.13.(2009年辽宁锦州)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.(1)求y与x之间的函数关系式,并求出x的取值范围;(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式.当销售单价为何值时,所获利润最大?最大利润是多少?14.(2009年甘肃白银)鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上?(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?15.(2009年湖北鄂州)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售。按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610解答以下问题(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.【参考答案】选择题CCCAAADBB填空题5x+1011①②④4(1)3(2)1(3)15解答题1.解:(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30.∴解得∴y=x+45(2)当x=400时,y=×400+45=5>3.∴他们能在汽车报警前回到家.2.解:(1)8,2(2)第二组由甲地出发首次到达乙地所用的时间为:(小时)第二组由乙地到达丙地所用的时间为:(小时)(3)根据题意得A.B的坐标分别为(0.8,0)和(1,2),设线段AB的函数关系式为:,根据题意得: 解得:∴图中线段AB所表示的S2与t间的函数关系式为:,自变量t的取值范围是:.3.解:(1)不同,理由如下:∵往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同.(2)设返程中y与x之间的表达式为y=kx+b,则解之,得∴y=-48x+240.(2.5≤x≤5)(评卷时,自变量的取值范围不作要求) (3)当x=4时,汽车在返程中,∴y=-48×4+240=48.∴这辆汽车从甲地出发4h时与甲地的距离为48km.4.(1)4千米,(2)解法一:84+1=85解法二:求出解析式84+1=85(3)写出解析式20+85=1055.解:(1)当时,设,把代入上式得:当时,设,把、代入上式得:解得:(2)当时,当时,即:得:当时,即:得:当时,即,答:当时,选择甲工程队更合算,当时,选择乙工程队更合算,当时,选择两个工程队的花费一样.6.解:(1)(2420+1980)×13%=572答:可以享受政府572元的补贴.(2)①设冰箱采购x台,则彩电采购(40-x)台,根据题意,得2320x+1900(40-x)≤85000,x≥(40-x).解不等式组,得≤x≤∵x为正整数.∴x=19,20,21.∴该商场共有3种进货方案:方案一:冰箱购买19台,彩电购买21台方案二:冰箱购买20台,彩电购买20台;方案三:冰箱购买21台,彩电购买19台.②设商场获得总利润y元,根据题意,得y=(24202320)x+(198040-x)=20x+3200∵20>0,∴y随x的增大而增大∴当x=21时,y最大=20×21+3200=3620答:方案三商场获得利润最大,最大利润是3620元7.解:(1)由图可知,星期天当日注入了立方米的天然气; 2分(2)当时,设储气罐中的储气量(立方米)与时间(小时)的函数解析式为:(为常数,且),∵它的图象过点,,∴解得故所求函数解析式为:.(3)可以.∵给18辆车加气需(立方米),储气量为(立方米),于是有:,解得:,而从8:00到10:30相差2.5小时,显然有:,故第18辆车在当天10:30之前可以加完气.8.解:(1)由题意,,解得:m=7.2.(2)(或:设y=kx+b,将(2,0.7),(3,0.8)代入,得到y=0.1x+0.5,把(4,0.9),∴6月玉米的价格是:1.1元/500克;∵5月增长率:,∴6月猪肉的价格:6(1-)=5.76元/500克.∴W==5.24<6,要采取措施.(3)7月猪肉价格是:元/500克;7月玉米价格是:元/500克;由题意,+=5.5,解得,.不合题意,舍去.∴,,∴不(或:不一定)需要采取措施.9.解:(1)0,3.(2)由题意,得,

∴.,∴.(3)由题意,得.整理,得.由题意,得解得x≤90. 【注:事实上,0≤x≤90且x是6的整数倍】由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90张、75张、0张.10.解:(1)从纸箱厂定制购买纸箱费用:蔬菜加工厂自己加工纸箱费用:.(2),由,得:,解得:.当时,,选择方案一,从纸箱厂定制购买纸箱所需的费用低.当时,,选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.当时,,两种方案都可以,两种方案所需的费用相同.11.解:(1)()内填60甲车从到的行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论