版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市六校2025届高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角的对边分别是,若,则()A. B.或 C.或 D.2.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.643.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(
)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97
D.0.964.设全集,集合,,则()A. B. C. D.5.的直观图如图所示,其中,则在原图中边的长为()A. B. C.2 D.6.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.7.若tan()=2,则sin2α=()A. B. C. D.8.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.9.已知实数,满足,,且,,成等比数列,则有()A.最大值 B.最大值 C.最小值 D.最小值10.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.12.已知三个顶点的坐标分别为,若⊥,则的值是______.13.古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点,,动点满足(其中和是正常数,且),则的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为__________.14.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________15.已知函数,则函数的最小值是___.16.已知直线与,当时,实数_______;当时,实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,点E为线段PA的中点.(1)求证:PC∥平面BDE;(2)求三棱锥E-BCD的体积.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,,求△ABC的面积S.19.已知函数.(1)求的单调增区间;(2)求的图像的对称中心与对称轴.20.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.21.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且与垂直,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
直接利用正弦定理,即可得到本题答案,记得要检验,大边对大角.【详解】因为,所以,又,所以,.故选:D【点睛】本题主要考查利用正弦定理求角.2、A【解析】
分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.3、B【解析】
利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得,故答案为B【点睛】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】
先求得集合的补集,然后求其与集合的交集,由此得出正确选项.【详解】依题意,所以,故选D.【点睛】本小题主要考查集合补集、交集的概念和运算,属于基础题.5、D【解析】
由直观图确定原图形中三角形边的关系及长度,然后计算.【详解】在原图形中,,,∴.故选:D.【点睛】本题考查直观图,考查由直观图还原原平面图形.掌握斜二测画法的规则是解题关键.6、A【解析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。7、B【解析】
由两角差的正切得tan,化sin2α为tan的齐次式求解【详解】tan()=2,则则sin2α=故选:B【点睛】本题考查两角差的正切公式,考查二倍角公式及齐次式求值,意在考查公式的灵活运用,是基础题8、D【解析】
根据题意,由不等式的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【点睛】本题考查不等式的性质,对于错误的结论举出反例即可.9、C【解析】试题分析:因为,,成等比数列,所以可得,有最小值,故选C.考点:1、等比数列的性质;2、对数的运算及基本不等式求最值.10、A【解析】
根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【点睛】本题考查了统计案例散点图,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、371【解析】
由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.12、【解析】
求出,再利用,求得.【详解】,因为⊥,所以,解得:.【点睛】本题考查向量的坐标表示、数量积运算,要注意向量坐标与点坐标的区别.13、【解析】
设,由动点满足(其中和是正常数,且),可得,化简整理可得.【详解】设,由动点满足(其中和是正常数,且),所以,化简得,即,所以该圆半径故该圆的半径为.【点睛】本题考查圆方程的标准形式和两点距离公式,难点主要在于计算.14、【解析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.15、5【解析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.16、【解析】
根据两直线垂直和平行的充要条件,得到关于的方程,解方程即可得答案.【详解】当时,,解得:;当时,且,解得:.故答案为:;.【点睛】本题考查两直线垂直和平行的充要条件,考查逻辑推理能力和运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)16【解析】
(1)证明EO∥PC得到PC∥平面BDE.(2)先证明EF就是三棱锥E-BCD的高,再利用体积公式得到三棱锥E-BCD的体积.【详解】(1)证明:连结AC交BD于O,连结EO.∵四边形ABCD是正方形,在ΔPAC中,O为AC中点,又∵E为PA中点∴EO∥PC.又∵PC⊄平面BDE,EO⊂平面BDE.∴PC∥平面BDE.(2)解:取AD中点F,连结EF.则EF∥PD且EF=1∵PD⊥平面ABCD,∴EF⊥平面ABCD,∴EF就是三棱锥E-BCD的高.在正方形ABCD中,SΔBCD∴V三棱锥【点睛】本题考查了线面平行,三棱锥的体积,意在考查学生的空间想象能力和计算能力.18、(1)(1)【解析】试题分析:(1)由已知利用正弦定理,两角和的正弦公式、诱导公式化简可得,结合,可求,进而可求的值;(1)由已知及余弦定理,平方和公式可求的值,进而利用三角形面积公式即可计算得解.试题解析:(1)在△ABC中,∵acosC+ccosA=1bcosA,∴sinAcosC+sinCcosA=1sinBcosA,
∴sin(A+C)=sinB=1sinBcosA,∵sinB≠0,∴,可得:
(1)∵,,∴b1+c1=bc+4,可得:(b+c)1=3bc+4=10,可得:bc=1.∴.19、(1);(2)对称中心,;对称轴为【解析】
利用诱导公式可将函数化为;(1)令,求得的范围即为所求单调增区间;(2)令,求得即为对称中心横坐标,进而得到对称中心;令,求得即为对称轴.【详解】(1)令,,解得:,的单调递增区间为(2)令,,解得:,的对称中心为,令,,解得:,的对称轴为【点睛】本题考查正弦型函数单调区间、对称轴和对称中心的求解,涉及到诱导公式化简函数的问题;关键是能够熟练掌握整体对应的方式,结合正弦函数的性质来求解单调区间、对称轴和对称中心.20、(1);(2)证明见解析.【解析】
(1)由,可得出,两式相减,化简即可得出结果;(2)令代入求出的值,再由求出的值,可验证和时均满足,并假设当时等式成立,利用数学归纳法结合数列的递推公式推导出时等式也成立,综合可得出结论.【详解】(1)对任意的,由可得,上述两式相减得,化简得;(2)①当时,由可得,解得,满足;②当时,由于,则,满足;③假设当时,成立,则有,由于,则.这说明,当时,等式也成立.综合①②③,.【点睛】本题考查数列递推公式的求解,同时也考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《计算物理》课程教学大纲
- 黑龙江省牡丹江市2024-2025学年高三上学期期中考试生物试题含答案
- 2024年出售农民自建房合同范本
- 2024年代理服务简单版合同范本
- 2024年承接山地运输合同范本
- 福建省部分达标学校2024-2025学年高一上学期11月期中考试 物理(含解析)
- 东南交通大学规划
- 医院收费室主任述职报告
- 冬季七防知识培训
- 医院保洁人员培训内容
- 墩身施工质量控制要点
- 智慧城市-西安市城市运行大数据平台可研报告
- 工程施工进度款申请表(模板)WORD
- 干部履历表请用开纸双面打印
- 反射反应及反射发育的评定
- 软基处理监测及检测方案
- M7.5浆砌石砌筑
- 关于河道管理范围内建设项目防洪影响咨询服务费计列的指导意见
- 法律顾问服务满意度考核评分表.doc
- 小学生综合素质评价手册范本(1)14页
- 35kV配电系统调试试验方案
评论
0/150
提交评论