泰安第一中学2025届数学高一下期末经典试题含解析_第1页
泰安第一中学2025届数学高一下期末经典试题含解析_第2页
泰安第一中学2025届数学高一下期末经典试题含解析_第3页
泰安第一中学2025届数学高一下期末经典试题含解析_第4页
泰安第一中学2025届数学高一下期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泰安第一中学2025届数学高一下期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.2.向量,若,则的值是()A. B. C. D.3.若数列,若,则在下列数列中,可取遍数列前项值的数列为()A. B. C. D.4.甲、乙、丙、丁四名运动员参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示,从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是()人数据甲乙丙丁平均数8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁5.的值为()A.1 B. C. D.6.设,,是平面内共线的三个不同的点,点是,,所在直线外任意-点,且满足,若点在线段的延长线上,则()A., B., C. D.7.将函数的图像向右平衡个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增8.如图,在正方体,点在线段上运动,则下列判断正确的是()①平面平面②平面③异面直线与所成角的取值范围是④三棱锥的体积不变A.①② B.①②④ C.③④ D.①④9.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B. C. D.10.已知函数相邻两个零点之间的距离为,将的图象向右平移个单位长度,所得的函数图象关于轴对称,则的一个值可能是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知四面体的四个顶点均在球的表面上,为球的直径,,四面体的体积最大值为____12.在中,给出如下命题:①是所在平面内一定点,且满足,则是的垂心;②是所在平面内一定点,动点满足,,则动点一定过的重心;③是内一定点,且,则;④若且,则为等边三角形,其中正确的命题为_____(将所有正确命题的序号都填上)13.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.14.在上定义运算,则不等式的解集为_____.15.已知向量,,且,则______.16.已知数列的前项和为,则其通项公式__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知各项均为正数的等比数列满足:,且,.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前n项和.18.已知等比数列的公比,且的等差中项为10,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.19.如图,在中,已知点D在边BC上,,的面积是面积的倍,且,.(1)求;(2)求边BC的长.20.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.21.已知函数.(1)求的值;(2)若,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.2、C【解析】

由平面向量的坐标运算与共线定理,列方程求出λ的值.【详解】向量=(-4,5),=(λ,1),则-=(-4-λ,4),又(-)∥,所以-4-λ-4λ=0,解得λ=-.故选C.【点睛】本题考查了平面向量的坐标运算与共线定理应用问题,是基础题.3、D【解析】

推导出是以6为周期的周期数列,从而是可取遍数列前6项值的数列.【详解】数列,,,,,,,,,是以6为周期的周期数列,是可取遍数列前6项值的数列.故选:D.【点睛】本题考查数列的周期性与三角函数知识的交会,考查基本运算求解能力,求解时注意函数与方程思想的应用.4、C【解析】

甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选.【详解】甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,综合平均数和方差两个方面说明丙成绩即高又稳定,丙是最佳人选,故选:C.【点睛】本题考查平均数和方差的实际应用,考查数据处理能力,求解时注意方差越小数据越稳定.5、A【解析】

利用诱导公式将转化到,然后直接计算出结果即可.【详解】因为,所以.故选:A.【点睛】本题考查正切诱导公式的简单运用,难度较易.注意:.6、A【解析】

由题可得:,将代入整理得:,利用点在线段的延长线上可得:,问题得解.【详解】由题可得:,所以可化为:整理得:,即:又点在线段的延长线上,所以与反向,所以,故选A【点睛】本题主要考查了平面向量中三点共线的推论,还考查了向量的减法及数乘向量的应用,考查了转化思想,属于中档题.7、C【解析】

根据函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象性质,得出结论.【详解】将函数的图象向右平移个单位长度,可得y=2sin(2x)的图象,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)=2sin(x)的图象,故g(x)的最大值为2,故A错误;显然,g(x)的最小正周期为2π,故B错误;当时,g(x)=,是最小值,故函数g(x)的图象关于直线对称,故C正确;在区间上,x∈[,],函数g(x)=2sin(x)单调递减,故D错误,故选:C.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象性质应用,属于基础题.8、B【解析】

①连接DB1,容易证明DB1⊥面ACD1,从而可以证明面面垂直;②连接A1B,A1C1容易证明平面BA1C1∥面ACD1,从而由线面平行的定义可得;③分析出A1P与AD1所成角的范围,从而可以判断真假;④=,C到面AD1P的距离不变,且三角形AD1P的面积不变;【详解】对于①,连接DB1,根据正方体的性质,有DB1⊥面ACD1,DB1⊂平面PB1D,从而可以证明平面PB1D⊥平面ACD1,正确.②连接A1B,A1C1容易证明平面BA1C1∥面ACD1,从而由线面平行的定义可得A1P∥平面ACD1,正确.③当P与线段BC1的两端点重合时,A1P与AD1所成角取最小值,当P与线段BC1的中点重合时,A1P与AD1所成角取最大值,故A1P与AD1所成角的范围是,错误;④=,C到面AD1P的距离不变,且三角形AD1P的面积不变.∴三棱锥A﹣D1PC的体积不变,正确;正确的命题为①②④.故选B.【点睛】本题考查空间点、线、面的位置关系,空间想象能力,中档题.9、C【解析】

将平移到一起,根据等边三角形的性质判断出两条异面直线所成角的大小.【详解】连接如下图所示,由于分别是棱和棱的中点,故,根据正方体的性质可知,所以是异面直线所成的角,而三角形为等边三角形,故.故选C.【点睛】本小题主要考查空间异面直线所成角的大小的求法,考查空间想象能力,属于基础题.10、D【解析】

先求周期,从而求得,再由图象变换求得.【详解】函数相邻两个零点之间的距离为,则周期为,∴,,图象向右平移个单位得,此函数图象关于轴对称,即为偶函数,∴,,.时,.故选D.【点睛】本题考查函数的图象与性质.考查图象平衡变换.在由图象确定函数解析式时,可由最大值和最小值确定,由“五点法”确定周期,从而确定,再由特殊值确定.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

为球的直径,可知与均为直角三角形,求出点到直线的距离为,可知点在球上的运动轨迹为小圆.【详解】如图所示,四面体内接于球,为球的直径,,,,过作于,,点在以为圆心,为半径的小圆上运动,当面面时,四面体的体积达到最大,.【点睛】立体几何中求最值问题,核心通过直观想象,找到几何体是如何变化的?本题求解的突破口在于找到点的运动轨迹,考查学生的空间想象能力和逻辑思维能力.12、①②④.【解析】

①:运用已知的式子进行合理的变形,可以得到,进而得到,再次运用等式同样可以得到,,这样可以证明出是的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的.【详解】①:,同理可得:,,所以本命题是真命题;②:,设的中点为,所以有,因此动点一定过的重心,故本命题是真命题;③:由,可得设的中点为,,,故本命题是假命题;④:由可知角的平分线垂直于底边,故是等腰三角形,由可知:,所以是等边三角形,故本命题是真命题,因此正确的命题为①②④.【点睛】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.13、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、【解析】

根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.15、【解析】

根据的坐标表示,即可得出,解出即可.【详解】,,.【点睛】本题主要考查平行向量的坐标关系应用.16、【解析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(I)由得出,可得公比为2,再求出后可得;(II)由(I)得,则,可用错位相减法求.【详解】解:(Ⅰ)因为所以即.由因为所以,公比所以(Ⅱ)由(Ⅰ)知,,所以.所以因为所以所以【点睛】本题考查等比数列的通项公式,考查错位相减法求和.数列求和根据数列的通项公式可采取不同的方法,一般有公式法、分组求和法、裂项相消法、错位相减法、倒序相加法等.18、(Ⅰ).(Ⅱ)【解析】

(Ⅰ)利用已知条件求出首项与公差,然后根据等比数列的通项公式,即可求出结果;(Ⅱ)先求出,再利用错位相减法求数列的前项和.【详解】解析:(Ⅰ)由题意可得:,∴∵,∴,∴数列的通项公式为.(Ⅱ),∴上述两式相减可得∴=【点睛】本题考查等比数列通项公式的求法,以及利用错位相减法求和,考查计算能力,属于基础题.19、(1);(2)【解析】

(1)利用三角形面积公式得出和的表达式,由,化简得出的值;(2)由结合,得出,在中,利用余弦定理得出,再由余弦定理得出,进而得出,由直角三角形的边角关系得出,最后由得出的长.【详解】(1)因为,,且,所以即,所以.(2)由(1)知,所以在中,,,由余弦定理所以.且所以,解得.所以.即边BC的长为.【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.20、(1)(2)【解析】

(1)利用等比数列的下标性质,可以由,得到,通过解方程组,结合已知可以求出的值,这样可以求出公比,最后可以求出等比数列的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论