版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省楚雄州数学高一下期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数,又,,且的最小值为,则正数的值是()A. B. C. D.2.已知实数满足,则的取值范围是()A. B. C. D.3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”4.化简结果为()A. B. C. D.5.某程序框图如图所示,若输出的,则判断框内应填()A. B. C. D.6.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.7.已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.8.设,是椭圆的左、右焦点,过的直线交椭圆于A,B两点,若最大值为5,则椭圆的离心率为()A. B. C. D.9.的弧度数是()A. B. C. D.10.已知向量、的夹角为,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则__________.12.已知{}是等差数列,是它的前项和,且,则____.13.等比数列的前项和为,若,,成等差数列,则其公比为_________.14.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).15.在中,,,为角,,所对的边,点为的重心,若,则的取值范围为______.16.已知数列的前项和为,则其通项公式__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,求其定义域.18.已知四棱锥的底面为直角梯形,,,底面,且,是的中点.(1)求证:直线平面;(2)若,求二面角的正弦值.19.某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):季度季度编号x销售额y(百万元)(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;(2)求关于的线性回归方程,并预测该公司的销售额.附:线性回归方程:其中,参考数据:.20.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.21.已知,,且(Ⅰ)求的值;(Ⅱ)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,由,得,,由,得,则,当时,取得最小值,则,解得,故选D.2、D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.【详解】由线性约束条件作出可行域,如下图三角形阴影部分区域(含边界),令,直线:,平移直线,当过点时取得最大值,当过点时取得最小值,所以的取值范围是.【点睛】本题主要考查线性规划的应用.本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键.3、C【解析】
结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.4、A【解析】
根据指数幂运算法则进行化简即可.【详解】本题正确选项:【点睛】本题考查指数幂的运算,属于基础题.5、A【解析】
根据程序框图的结构及输出结果,逆向推断即可得判断框中的内容.【详解】由程序框图可知,,则所以此时输出的值,因而时退出循环.因而判断框的内容为故选:A【点睛】本题考查了根据程序框图的输出值,确定判断框的内容,属于基础题.6、A【解析】
设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.7、A【解析】
先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.8、A【解析】
,故的最小值为,当且仅当轴时,最小,此时,计算得到答案.【详解】,最大值为5,故的最小值为,当且仅当轴时,最小,此时,即又因为,可得,故.故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.9、B【解析】
由角度与弧度的关系转化.【详解】-150.故选:B.【点睛】本题考查角度与弧度的互化,解题关键是掌握关系式:.10、B【解析】
利用平面向量数量积和定义计算出,可得出结果.【详解】向量、的夹角为,,,则.故选:B.【点睛】本题考查利用平面向量的数量积来计算平面向量的模,在计算时,一般将模进行平方,利用平面向量数量积的定义和运算律进行计算,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数恒等式,将代入得到,又因为,故得到故答案为。12、【解析】
根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.13、【解析】试题分析:、、成等差数列考点:1.等差数列性质;2.等比数列通项公式14、②④【解析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.15、【解析】
在中,延长交于,由重心的性质,找到、和的关系,在和中利用余弦定理分别表示出和,求出,再利用余弦定理表示出,利用基本不等式和的范围求解即可.【详解】画出,连接,并延长交于,因为是的重心,所以为中点,因为,所以,由重心的性质,,在中,由余弦定理得,,在中,由余弦定理得,因为,所以,又,所以,在中,由余弦定理和基本不等式,,又,所以,故.故答案为:【点睛】本题主要考查三角形重心的性质、余弦定理解三角形和基本不等式求最值,考查学生的分析转化能力,属于中档题.16、【解析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
由使得分式和偶次根式有意义的要求可得到一元二次不等式,解不等式求得结果.【详解】由题意得:,即,解得:定义域为【点睛】本题考查具体函数定义域的求解问题,关键是明确使得分式和偶次根式有意义的基本要求,由此构造不等式求得结果.18、(1)证明见解析;(2).【解析】
(1)取中点,连结,,推导出,,从而平面平面,由此能证明直线平面;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【详解】(1)证明:取中点,连结,,,是的中点,,,,,平面平面,平面,直线平面.(2)解:,,底面,,是的中点,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,设平面的法向量,,,则,取,得.设平面的法向量,,,则,取,得.设二面角的平面角为,则.二面角的余弦值为.【点睛】本题主要考查线面平行的证明,考查二面角的余弦值的求法,考查运算求解能力,属于中档题.19、(1);(2)关于的线性回归方程为,预测该公司的销售额为百万元.【解析】
(1)列举出所有的基本事件,并确定事件“这个季度的销售额都超过千万元”然后利用古典概型的概率公式可计算出所求事件的概率;(2)计算出和的值,然后将表格中的数据代入最小二乘法公式,计算出和的值,可得出关于的线性回归方程,然后将代入回归直线方程即可得出该公司的销售额的估计值.【详解】(1)从个季度的数据中任选个季度,这个季度的销售额有种情况:、、、、、、、、、设“这个季度的销售额都超过千万元”为事件,事件包含、、,种情况,所以;(2),,,.所以关于的线性回归方程为,令,得(百万元)所以预测该公司的销售额为百万元.【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了利用最小二乘法求回归直线方程,同时也考查了回归直线方程的应用,考查计算能力,属于中等题.20、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥BD,又⊥面,则.∵⊂平面,⊂平面,,∴平面.∵平面,∴平面平面;(3)解:连接,由(2)知,平面平面,∴即为与平面的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025车辆保管合同书范文
- 2025保修工程合同范本
- 2025学校食堂承包合同书
- 2025关于试用期解除合同及案例
- 2025年度军事电子对抗保密技术合同3篇
- 2025年度新能源充电设施建设公司合作协议书3篇
- 二零二五年度农村房屋租赁合同(含农业产业升级)
- 二零二五年度体育场馆租赁合同及赛事运营协议3篇
- 2025年度农村个人地基使用权转让及农业现代化设施配套协议书3篇
- 2025年度教育信息化项目经理合作协议2篇
- 医院科室合作共建协议 医院科室合作协议书
- 医务人员感染性职业暴露登记表
- qc成果提高剪力墙层间混凝土一次验收合格率
- 比赛获奖课件-I-love-My-White-Shoes(绘本)
- 初中生物-《植物的生殖与发育》教学课件设计
- 手机大脑:让人睡眠好、心情好、脑力好的戒手机指南
- 中考数学第一轮复习
- 一汽靖烨发动机有限公司安全文化知识手册
- 湘贺水利枢纽水电站设计
- 高压线防护架搭设施工方案
- 四川省成都市2021-2022学年高一(上)期末调研考试物理试题Word版含解析
评论
0/150
提交评论