2025届北京海淀人大附高一数学第二学期期末学业水平测试模拟试题含解析_第1页
2025届北京海淀人大附高一数学第二学期期末学业水平测试模拟试题含解析_第2页
2025届北京海淀人大附高一数学第二学期期末学业水平测试模拟试题含解析_第3页
2025届北京海淀人大附高一数学第二学期期末学业水平测试模拟试题含解析_第4页
2025届北京海淀人大附高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京海淀人大附高一数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法2.已知直线与平行,则等于()A.或 B.或 C. D.3.在△ABC中,内角A,B,C的对边分别是a,b,c,若cosB=,=2,且S△ABC=,则b的值为()A.4 B.3 C.2 D.14.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.5.在,,,是边上的两个动点,且,则的取值范围为()A. B. C. D.6.四边形,,,,则的外接圆与的内切圆的公共弦长()A. B. C. D.7.如图,已知正三棱柱的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为()cm.A.12 B.13 C.14 D.158.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β9.已知,,,则的取值范围是()A. B. C. D.10.直线与平行,则的值为()A. B.或 C.0 D.-2或0二、填空题:本大题共6小题,每小题5分,共30分。11.若点关于直线的对称点在函数的图像上,则称点、直线及函数组成系统,已知函数的反函数图像过点,且第一象限内的点、直线及函数组成系统,则代数式的最小值为________.12.设三棱锥满足,,则该三棱锥的体积的最大值为____________.13.在中,,,则的值为________14.已知实数,是与的等比中项,则的最小值是______.15.化简:______.(要求将结果写成最简形式)16.已知为等差数列,,前n项和取得最大值时n的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,已知点D在边BC上,,的面积是面积的倍,且,.(1)求;(2)求边BC的长.18.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.19.已知函数,且的解集为.(1)求函数的解析式;(2)解关于的不等式,;(3)设,若对于任意的都有,求的最小值.20.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.21.已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列.(1)求数列的通项公式;(2)设,求数列的最大项的值与最小项的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【详解】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.

故选B.【点睛】本题考查随机抽样知识,属基本题型、基本概念的考查.2、C【解析】

由题意可知且,解得.故选.3、C【解析】试题分析:根据正弦定理可得,.在中,,.,,.,.故C正确.考点:1正弦定理;2余弦定理.4、D【解析】

由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【点睛】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.5、A【解析】由题意,可以点为原点,分别以为轴建立平面直角坐标系,如图所示,则点的坐标分别为,直线的方程为,不妨设点的坐标分别为,,不妨设,由,所以,整理得,则,即,所以当时,有最小值,当时,有最大值.故选A.点睛:此题主要考查了向量数量积的坐标运算,以及直线方程和两点间距离的计算等方面的知识与技能,还有坐标法的运用等,属于中高档题,也是常考考点.根据题意,把运动(即的位置在变)中不变的因素()找出来,通过坐标法建立合理的直角坐标系,把点的坐标表示出来,再通过向量的坐标运算,列出式子,讨论其最值,从而问题可得解.6、C【解析】

以为坐标原点,以为轴,轴建立平面直角坐标系,求出的外接圆与的内切圆的方程,两圆方程相减可得公共弦所在直线方程,求出弦心距,进而可得公共弦长.【详解】解:以为坐标原点,以为轴,轴建立平面直角坐标系,过作交于点,则,故,则为等边三角形,故,的外接圆方程为,①的内切圆方程为,②①-②得两圆的公共弦所在直线方程为:,的外接圆圆心到公共弦的距离为,公共弦长为,故答案为:C.【点睛】本题考查两圆公共弦长的求解,关键是要求出两圆的公共弦所在直线方程,将两圆方程作差即可得到,是中档题.7、B【解析】

将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.8、D【解析】

在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9、D【解析】

根据所给等式,用表示出,代入中化简,令并构造函数,结合函数的图像与性质即可求得的取值范围.【详解】因为,所以,由解得,因为,所以,则由可得,令,.所以画出,的图像如下图所示:由图像可知,函数在内的值域为,即的取值范围为,故选:D.【点睛】本题考查了由等式求整式的取值范围问题,打勾函数的图像与性质应用,注意若使用基本不等式,注意等号成立条件及自变量取值范围影响,属于中档题.10、A【解析】

若直线与平行,则,解出a值后,验证两条直线是否重合,可得答案.【详解】若直线与平行,

则,

解得或,

又时,直线与表示同一条直线,

故,

故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据函数的反函数图像过点可求出,由、直线及函数组成系统可知在的图象上,且,代入化简为,换元则,利用单调性求解.【详解】因为函数的反函数图像过点,所以,即,由、直线及函数组成系统知在上,所以,代入化简得,令由知,故则在上单调递减,所以当即时,,故填.【点睛】本题主要考查了对称问题,反函数概念,根据条件求最值,函数的单调性,换元法,综合性大,难度大,属于难题.12、【解析】

取中点,连,可证平面,,要使最大,只需求最大值,即可求解.【详解】取中点,连,所以,,,平面,平面,设中边上的高为,,当且仅当时,取等号.故答案为:.【点睛】本题考查锥体的体积计算,考查线面垂直的判定,属于中档题.13、【解析】

由,得到,由三角形的内角和,求出,再由正弦定理求出的值.【详解】因为,,所以,所以,在中,由正弦定理得,所以.【点睛】本题考查正弦定理解三角形,属于简单题.14、【解析】

通过是与的等比中项得到,利用均值不等式求得最小值.【详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【点睛】本题考查了等比中项,均值不等式,1的代换是解题的关键.15、【解析】

结合诱导公式化简,再结合两角差正弦公式分析即可【详解】故答案为:【点睛】本题考查三角函数的化简,诱导公式的使用,属于基础题16、20【解析】

先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用三角形面积公式得出和的表达式,由,化简得出的值;(2)由结合,得出,在中,利用余弦定理得出,再由余弦定理得出,进而得出,由直角三角形的边角关系得出,最后由得出的长.【详解】(1)因为,,且,所以即,所以.(2)由(1)知,所以在中,,,由余弦定理所以.且所以,解得.所以.即边BC的长为.【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.18、(1);(2).【解析】试题分析:(1)在中,由余弦定理得,最后根据的值及,即可得到的值;(2)在中,由正弦定理得到,从而代入数据进行运算即可得到的长.试题解析:(1)在中,,由余弦定理可得又因为,所以(2)在中,由正弦定理可得所以.考点:1.正弦定理;2.余弦定理;3.解斜三角形.19、(1)(2)答案不唯一,具体见解析(3)1【解析】

(1)根据韦达定理即可。(2)分别对三种情况进行讨论。(3)带入,分别对时三种情况讨论。【详解】(1)的解集为可得1,2是方程的两根,则,(2)时,时,时,(3),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时,,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时,,在时,取得最小值,即;对于任意的都有则等价于或()则的最小值为1【点睛】本题主要考查了含参数的一元二次不等式,以及绝对值不等式,在解决含参数的不等式时首先要对参数进行讨论。本题属于难题。20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.21、(1);(2)最大项的值为,最小项的值为【解析】试题分析:(1)根据成等差数列,利用等比数列通项公式和前项和公式,展

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论