版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省郧阳中学2025届高一下数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上随机取一个数x,的值介于0到之间的概率为()A. B. C. D.2.已知,,,则a,b,c的大小关系为()A. B. C. D.3.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.4.如图是函数的部分图象,则下列命题中,正确的命题序号是①函数的最小正周期为②函数的振幅为③函数的一条对称轴方程为④函数的单调递增区间是⑤函数的解析式为A.③⑤ B.③④ C.④⑤ D.①③5.已知圆C的半径为2,在圆内随机取一点P,并以P为中点作弦AB,则弦长的概率为A. B. C. D.6.已知四面体中,,分别是,的中点,若,,与所成角的度数为30°,则与所成角的度数为()A.90° B.45° C.60° D.30°7.已知,,,则()A. B. C.-7 D.78.已知数列,满足,若,则()A. B. C. D.9.已知是函数的两个零点,则()A. B.C. D.10.已知:,,若函数和有完全相同的对称轴,则不等式的解集是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____12.把数列的各项排成如图所示三角形状,记表示第m行、第n个数的位置,则在图中的位置可记为____________.13.已知是等比数列,,,则公比______.14.若函数,的最大值为,则的值是________.15.方程,的解集是__________.16.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(,,)的部分图象如图所示,其中点是图象的一个最高点.(Ⅰ)求函数的解析式;(Ⅱ)已知且,求.18.已知等比数列的前项和为,且成等差数列,(1)求数列的公比;(2)若,求数列的通项公式.19.(1)计算(2)已知,求的值20.知两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求当m为何值时,l1与l2:(1)垂直;(2)平行,并求出两平行线间的距离.21.将函数的图像向右平移1个单位,得到函数的图像.(1)求的单调递增区间;(3)设为坐标原点,直线与函数的图像自左至右相交于点,,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】因为,若,则,,故选A.2、D【解析】
由,,,得解.【详解】解:因为,,,所以,故选:D.【点睛】本题考查了指数幂,对数值的大小关系,属基础题.3、D【解析】
由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,
则,
为平面的一个法向量.
.
∴直线与平面所成角的正弦值为.故选:D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.4、A【解析】
根据图象求出函数解析式,根据三角函数型函数的性质逐一判定.【详解】由图象可知,,最大值为,,因为图象过点,,由,即可判定错,正确,由得对称轴方程为,,故正确;由,,,函数的单调递增区间是,故错;故选:A【点睛】本题主要考查了根据图象求正弦型函数函数的解析式,及正弦型函数的性质,属于中档题.5、B【解析】
先求出临界状态时点P的位置,若,则点P与点C的距离必须大于或等于临界状态时与点C的距离,再根据几何概型的概率计算公式求解.【详解】如图所示:当时,此时,若,则点P必须位于以点C为圆心,半径为1和半径为2的圆环内,所以弦长的概率为:.故选B.【点睛】本题主要考查几何概型与圆的垂径定理,此类题型首先要求出临界状态时的情况,再判断满足条件的区域.6、A【解析】
取的中点,利用三角形中位线定理,可以得到,与所成角为,运用三角形中位线定理和正弦定理,可以求出的大小,也就能求出与所成角的度数.【详解】取的中点连接,如下图所示:因为,分别是,的中点,所以有,因为与所成角的度数为30°,所以,与所成角的大小等于的度数.在中,,故本题选A.【点睛】本题考查了异面直线所成角的求法,考查了正弦定理,取中点利用三角形中位线定理是解题的关键.7、C【解析】
把已知等式平方后可求得.【详解】∵,∴,即,,∵,∴,∴,,∴.故选C.【点睛】本题考查同角间的三角函数关系,考查两角和的正切公式,解题关键是把已知等式平方,并把1用代替,以求得.8、C【解析】
利用递推公式计算出数列的前几项,找出数列的周期,然后利用周期性求出的值.【详解】,且,,,,所以,,则数列是以为周期的周期数列,.故选:C.【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.9、A【解析】
在同一直角坐标系中作出与的图象,设两函数图象的交点,依题意可得,利用对数的运算性质结合图象即可得答案.【详解】解:,在同一直角坐标系中作出与的图象,
设两函数图象的交点,
则,即,
又,
所以,,即,
所以①;
又,故,即②,由①②得:,
故选:A.【点睛】本题考查根的存在性及根的个数判断,依题意可得是关键,考查作图能力与运算求解能力,属于难题.10、B【解析】
,所以因此,选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。12、【解析】
利用第m行共有个数,前m行共有个数,得的位置即可求解【详解】因为第m行共有个数,前m行共有个数,所以应该在第11行倒数第二个数,所以的位置为.故答案为:【点睛】本题考查等差数列的通项和求和公式,发现每行个数成等差是关键,是基础题13、【解析】
利用等比数列的性质可求.【详解】设等比数列的公比为,则,故.故答案为:【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)(为公比);(3)公比时,则有,其中为常数且;(4)为等比数列()且公比为.14、【解析】
利用两角差的正弦公式化简函数的解析式为,由的范围可得的范围,根据最大值可得的值.【详解】∵函数=2()=,∵,∴∈[,],又∵的最大值为,所以的最大值为,即=,解得.故答案为【点睛】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题.15、【解析】
用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.16、①②④【解析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和两个零点计算出和的值,再由最值点以及的的范围计算的值;(Ⅱ)先根据(Ⅰ)中解析式将表示出来,然后再利用两角和的正弦公式计算的值.【详解】解:(Ⅰ)由函数最大值为2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【点睛】根据三角函数图象求解析式的步骤:(1)由最值确定的值;(2)由周期确定的值;(3)由最值点或者图像上的点确定的取值.这里需要注意确定的值时,尽量不要选取平衡位置上的点,这样容易造成多解的情况.18、(1)(2)【解析】
(1)由等差数列的中项性质,以及等比数列的求和公式,解方程可得;(2)由等比数列的通项公式,解方程可得首项,进而得到所求通项公式.【详解】解:(1)等比数列的前项和为,且,,成等差数列,可得,显然不成立,即有,则,化为,解得;(2),即,可得,数列的通项公式为.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.19、(1)1+;(2).【解析】
(1)利用对数的运算法则计算得解;(2)先化简已知得,再把它代入化简的式子即得解.【详解】(1)原式=1+;(2)由题得,所以.【点睛】本题主要考查对数的运算,考查诱导公式化简求值和同角的三角函数关系,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)m(2)m=﹣7,距离为【解析】
(1)由题意利用两条直线垂直的性质,求出m的值.(2)由题意利用两条直线平行的性质,求出m的值,再利用两平行线间的距离公式,求出结果.【详解】(1)两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,当(3+m)•2+4(5+m)=0时,即6m+26=0时,l1与l2垂直,即m时,l1与l2垂直.(2)当时,l1与l2平行,即m=﹣7时,l1与l2平行,此时,两条直线l1:﹣2x+2y=13,l2:﹣2x+2y=﹣8,此时,两平行线间的距离为.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 墙面涂装工程劳务外包合约
- 购销合同管理的信息化
- 【项目管理】邵洪芳 教材精讲班教案 30-第3章-3.2.1-施工合同管理(四)
- 2024新西兰的首都新西兰的房屋买卖合同模板
- 2024自然人借款合同模板
- 演绎劳务合同范例
- 房东转让协议合同范例
- 建筑装饰中的画面构图与比例考核试卷
- 国际大豆交易合同范例
- 天然气在海洋利用中的应用考核试卷
- 广东常用的100种植物
- 生产现场作业十不干PPT课件
- 输电线路设计知识讲义
- 物料承认管理办法
- 业主委员会成立流程图
- AEFI防范与处置PPT课件
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析练习(带答案)
- 小学综合实践活动方便筷子教案三年级上册精品
- 阜阳市肿瘤医院病房大楼建筑智能化设备、材料采购及安装系统工程技术要求
- 意大利汽车零部件企业
- 食品经营操作流程图112
评论
0/150
提交评论