版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市2025届高一数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定2.已知,两条不同直线与的交点在直线上,则的值为()A.2 B.1 C.0 D.-13.在平面直角坐标系xOy中,点P(2,–1)到直线l:4x–3y+4=0的距离为()A.3 B. C.1 D.34.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.5.下列函数中,在区间上为增函数的是A. B.C. D.6.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.157.在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则()A.6 B.5 C.4 D.38.已知在中,,那么的值为()A. B. C. D.9.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x10.空间中可以确定一个平面的条件是()A.三个点 B.四个点 C.三角形 D.四边形二、填空题:本大题共6小题,每小题5分,共30分。11.若,,则___________.12.两圆交于点和,两圆的圆心都在直线上,则____________;13.已知圆C:,点M的坐标为(2,4),过点N(4,0)作直线交圆C于A,B两点,则的最小值为________14.利用直线与圆的有关知识求函数的最小值为_______.15.已知,若,则______.16.已知数列的前n项和,则数列的通项公式是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,不是共线向量,,,(1)判断,是否共线;(2)若,求的值18.假设关于某设备的使用年限x和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y与x是否呈线性相关关系(2)若y与x呈线性相关关系,求线性回归方程的回归系数,(3)估计使用年限为10年时,维修费用是多少?参考公式及相关数据:19.已知,.(Ⅰ)求,的值;(Ⅱ)求的值.20.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.21.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.2、C【解析】
联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【详解】交点在直线上观察分母和不是恒相等故故答案选C【点睛】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.3、A【解析】
由点到直线距离公式计算.【详解】.故选:A.【点睛】本题考查点到直线的距离公式,掌握距离公式是解题基础.点到直线的距离为.4、B【解析】
根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.5、A【解析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.6、C【解析】
先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【详解】因为点满足,所以,则故选C.【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.7、D【解析】
由众数就是出现次数最多的数,可确定,题中中位数是中间两个数的平均数,这样可计算出.【详解】由甲组数据的众数为11,得,乙组数据中间两个数分别为6和,所以中位数是,得到,因此.故选:D.【点睛】本题考查众数和中位数的概念,掌握众数与中位数的定义是解题基础.8、A【解析】
,不妨设,,则,选A.9、D【解析】试题分析:三角函数的平移原则为左加右减上加下减.直接求出平移后的函数解析式即可.解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.考点:函数y=Asin(ωx+φ)的图象变换.10、C【解析】
根据公理2即可得出答案.【详解】在A中,不共线的三个点能确定一个平面,共线的三个点不能确定一个平面,故A错误;在B中,不共线的四个点最多能确定四个平面,故B错误;在C中,由于三角形的三个顶点不共线,因此三角形能确定一个平面,故C正确;在D中,四边形有空间四边形和平面四边形,空间四边形不能确定一个平面,故D错误.【点睛】本题对公理2进行了考查,确定一个平面关键是对过不在一条直线上的三点,有且只有一个平面的理解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.12、【解析】
由圆的性质可知,直线与直线垂直,,直线的斜率,,解得.故填:3.【点睛】本题考查了相交圆的几何性质,和直线垂直的关系,考查数形结合的思想与计算能力,属于基础题.13、8【解析】
先将所求化为M到AB中点的距离的最小值问题,再求得AB中点的轨迹为圆,利用点M到圆心的距离减去半径求得结果.【详解】设A、B中点为Q,连接QC,则QC,所以Q的轨迹是以NC为直径的圆,圆心为P(5,0),半径为1,又,即求点M到P的距离减去半径,又,所以,故答案为8【点睛】本题考查了向量的加法运算,考查了求圆中弦中点轨迹的几何方法,考查了点点距公式,考查了分析解决问题的能力,属于中档题.14、【解析】
令得,转化为z==,再利用圆心到直线距离求最值即可【详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【点睛】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题15、【解析】
由条件利用正切函数的单调性直接求出的值.【详解】解:函数在上单调递增,且,若,则,故答案为:.【点睛】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.16、【解析】
时,,利用时,可得,最后验证是否满足上式,不满足时候,要写成分段函数的形式.【详解】当时,,当时,=,又时,不适合,所以.【点睛】本题考查了由求,注意使用求时的条件是,所以求出后还要验证适不适合,如果适合,要将两种情况合成一种情况作答,如果不适合,要用分段函数的形式作答.属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)与不共线.(2)【解析】
(1)假设与共线,由此列方程组,解方程组判断出与不共线.(2)根据两个向量平行列方程组,解方程组求得的值.【详解】解:(1)若与共线,由题知为非零向量,则有,即,∴得到且,∴不存在,即与不平行.(2)∵,则,即,即,解得.【点睛】本小题主要考查判断两个向量是否共线,考查根据两个向量平行求参数,属于基础题.18、(1)见解析;(2),;(3)12.38万元【解析】
(1)在坐标系中画出5个离散的点;(2)利用最小二乘法求出,再利用回归直线过散点图的中心,求出;(3)将代入(2)中的回归直线方程,求得.【详解】(1)散点图如下:所以从散点图年,它们具有线性相关关系.(2),,于是有,.(3)回归直线方程是当时,(万元),即估计使用年限为10年时,维修费用是万元.【点睛】本题考查散点图的作法、最小二乘法求回归直线方程及利用回归直线预报当时,的值,考查数据处理能力.19、(Ⅰ),.(Ⅱ).【解析】试题分析:(Ⅰ)结合角的范围和同角三角函数基本关系可得,.(Ⅱ)将原式整理变形,结合(Ⅰ)的结论可得其值为.试题解析:(Ⅰ)因为,所以,由于,所以,所以.(Ⅱ)原式..20、函数在区间上的最大值为2,最小值为-1【解析】试题分析:(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式21、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解析】
(Ⅰ)根据直角三角形,底面积乘高是面积;然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 墙面涂装工程劳务外包合约
- 购销合同管理的信息化
- 【项目管理】邵洪芳 教材精讲班教案 30-第3章-3.2.1-施工合同管理(四)
- 2024新西兰的首都新西兰的房屋买卖合同模板
- 2024自然人借款合同模板
- 演绎劳务合同范例
- 房东转让协议合同范例
- 建筑装饰中的画面构图与比例考核试卷
- 国际大豆交易合同范例
- 天然气在海洋利用中的应用考核试卷
- 广东常用的100种植物
- 生产现场作业十不干PPT课件
- 输电线路设计知识讲义
- 物料承认管理办法
- 业主委员会成立流程图
- AEFI防范与处置PPT课件
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析练习(带答案)
- 小学综合实践活动方便筷子教案三年级上册精品
- 阜阳市肿瘤医院病房大楼建筑智能化设备、材料采购及安装系统工程技术要求
- 意大利汽车零部件企业
- 食品经营操作流程图112
评论
0/150
提交评论