版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市遵化市2025届高一数学第二学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在0°到360°范围内,与角-130°终边相同的角是()A.50° B.130° C.170° D.230°2.向量,,且,则等于()A. B. C.2 D.103.如图所示的阴影部分是由轴及曲线围成,在矩形区域内随机取一点,则该点取自阴影部分的概率是()A. B. C. D.4.内角,,的对边分别为,,.已知,,,则这样的三角形有()A.0个 B.1个 C.2个 D.1个或2个5.袋中有个大小相同的小球,其中个白球,个红球,个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为()A. B. C. D.6.如图,在平行六面体中,M,N分别是所在棱的中点,则MN与平面的位置关系是()A.MN平面B.MN与平面相交C.MN平面D.无法确定MN与平面的位置关系7.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.8.若函数只有一个零点,则实数的取值范围是A.或 B.C.或 D.9.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面10.直线经过点和,则直线的倾斜角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前项和为,若,则=_______12.若数列是等差数列,则数列也为等差数列,类比上述性质,相应地,若正项数列是等比数列,则数列_________也是等比数列.13.若数列满足,,则______.14.函数的最小正周期为__________.15.已知数列中,且当时,则数列的前项和=__________.16.已知,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.18.在等比数列中,,.(1)求的通项公式;(2)若,求数列的前项和.19.在正方体中.(1)求证:;(2)是中点时,求直线与面所成角.20.已知圆与轴交于两点,且(为圆心),过点且斜率为的直线与圆相交于两点(Ⅰ)求实数的值;(Ⅱ)若,求的取值范围;(Ⅲ)若向量与向量共线(为坐标原点),求的值21.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先表示与角-130°终边相同的角,再在0°到360°范围内确定具体角,最后作选择.【详解】因为与角-130°终边相同的角为,所以,因此选D.【点睛】本题考查终边相同的角,考查基本分析判断能力,属基本题.2、B【解析】
先由数量积为,得出,求出的坐标,利用模长的坐标公式求解即可.【详解】由题意可得,则则故选:B【点睛】本题主要考查了向量模的坐标表示以及向量垂直的坐标表示,属于基础题.3、A【解析】,所以,故选A。4、C【解析】
根据和的大小关系,判断出解的个数.【详解】由于,所以,故解的个数有两个.如图所示两个解.故选:C【点睛】本小题主要考查正弦定理的运用过程中,三角形解的个数判断,属于基础题.5、D【解析】
利用古典概型的概率公式可计算出所求事件的概率.【详解】从袋中个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为,因此,取出的球恰好是红色或者黑色小球的概率为,故选D.【点睛】本题考查古典概型概率的计算,解题时要确定出全部基本事件数和所求事件所包含的基本事件数,并利用古典概型的概率公式进行计算,考查计算能力,属于基础题.6、C【解析】
取的中点,连结,可证明平面平面,由于平面,可知平面.【详解】取的中点,连结,显然,因为平面,平面,所以平面,平面,又,故平面平面,又因为平面,所以平面.故选C.【点睛】本题考查了直线与平面的位置关系,考查了线面平行、面面平行的证明,属于基础题.7、B【解析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.8、A【解析】
根据题意,原题等价于,再讨论即可得到结论.【详解】由题,故函数有一个零点等价于即当时,,,符合题意;当,时,令,满足解得,综上的取值范围是或故选:A.【点睛】本题考查函数的零点,对数函数的性质,二次函数根的分布问题,考查了分类讨论思想,属于中档题.9、D【解析】
折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【点睛】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.10、D【解析】
算出直线的斜率后可得其倾斜角.【详解】设直线的斜率为,且倾斜角为,则,根据,而,故,故选D.【点睛】本题考查直线倾斜角的计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【点睛】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.12、【解析】
利用类比推理分析,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.【详解】由数列是等差数列,则当时,数列也是等差数列.类比上述性质,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.故答案为:【点睛】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).13、【解析】
利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【详解】得,,所以有,因此.故答案为:【点睛】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.14、【解析】
先将转化为余弦的二倍角公式,再用最小正周期公式求解.【详解】解:最小正周期为.故答案为【点睛】本题考查二倍角的余弦公式,和最小正周期公式.15、【解析】
先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.16、【解析】
利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.【详解】由题意,向量,则,,所以.故答案为【点睛】本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)设正项等比数列的公比为q(q>0),由已知列式求得公比,则等比数列的通项公式可求;(2)由,求解等差数列的公差,则数列的前n项和可求.【详解】(1)设正项等比数列的公比为q(q>0),由,得,则q=3.;(2)设等差数列的公差为d,由,得,∴d=3.∴数列的前n项和【点睛】本题主要考查等差数列的通项公式与求和公式,考查了等比数列的通项公式,意在考查综合应用所学知识解答问题的能力,属于中档题.18、(1);(2).【解析】
(1)设出通项公式,利用待定系数法即得结果;(2)先求出通项,利用错位相减法可以得到前项和.【详解】(1)因为,,所以,解得故的通项公式为.(2)由(1)可得,则,①,②①-②得故.【点睛】本题主要考查等比数列的通项公式,错位相减法求和,意在考查学生的分析能力及计算能力,难度中等.19、(1)见解析;(2).【解析】
(1)连接,证明平面,进而可得出;(2)连接、、,设,过点在平面内作,垂足为点,连接,设,则角和均为直线与平面所成的角,从而可得出,即可求出所求角.【详解】(1)如下图所示,连接,在正方体中,平面,平面,,四边形为正方形,,,平面,平面,;(2)连接、、,设,过点在平面内作,垂足为点,设,设正方体的棱长为,在正方体中,且,所以,四边形为平行四边形,,平面,平面,在平面内,,,,,则、、、四点共面,为的中点,,且,平面,平面,,由勾股定理得,连接,设,则直线与面所成角为,则,,由连比定理得,则,因此,直线与面所成角为.【点睛】本题考查线线垂直的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20、(Ⅰ)(Ⅱ)(Ⅲ)【解析】
(Ⅰ)由圆的方程得到圆心坐标和;根据、为等腰直角三角形可知,从而得到,解方程求得结果;(Ⅱ)设直线方程为;利用点到直线距离公式求得圆心到直线距离;由垂径定理可得到,利用可构造不等式求得结果;(Ⅲ)直线方程与圆方程联立,根据直线与圆有两个交点可根据得到的取值范围;设,,利用韦达定理求得,并利用求得,即可得到;利用向量共线定理可得到关于的方程,解方程求得满足取值范围的结果.【详解】(Ⅰ)由圆得:圆心,由题意知,为等腰直角三角形设的中点为,则也为等腰直角三角形,解得:(Ⅱ)设直线方程为:则圆心到直线的距离:由,,可得:,解得:的取值范围为:(Ⅲ)联立直线与圆的方程:消去变量得:设,,由韦达定理得:且,整理得:解得:或,与向量共线,,解得:或不满足【点睛】本题考查直线与圆位置关系的综合应用,涉及到圆的方程的求解、垂径定理的应用、平面向量共线定理的应用;求解直线与圆位置关系综合应用类问题的常用方法是灵活应用圆心到直线的距离、直线与圆方程联立,韦达定理构造方程等方法,属于常考题型.21、(4)服用A药睡眠时间平均增加4.4;服用B药睡眠时间平均增加4.6;从计算结果来看,服用A药的效果更好;(4)A药
B药
6
4.
89565
45845
4.
794446844
7844567944
4.
46457
4544
4.
4
从茎叶图来看,A的数据大部分集中在第二、三段,B的数据大部分集中在第一、二段,故A药的药效好.【解析】(4)设A药观测数据的平均数为,B药观测数据的平均数为.由观测结果可得:=×(4.6+4.4+4.4+4.5+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024中国福州外轮代理限公司招聘15人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度地磅设备分期付款销售合同3篇
- 2024中国电信产业研究院招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国建筑一局(集团)限公司轨道交通项目部总工程师招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度生物医药产品临床试验合同
- 2024中国五洲工程设计集团限公司公开招聘若干人易考易错模拟试题(共500题)试卷后附参考答案
- 《实务专题研究》课件
- 2024年度版权许可合同:授权使用音乐作品进行演出
- 2024年度研发合作合同与研发成果分配协议
- 2024年度品牌授权使用合同标的授权范围与使用期限协议
- 美术《印象主义-莫奈》教学课件
- 现场检测安全管理制度
- 库房日常清洁卫生记录表
- DB37-T 4085-2020 商务楼宇安全隐患排查治理体系实施指南
- (四级)电子商务师理论考试核心题库及答案(含理论、实操)
- 水泥基浆体强度试验检测报告
- (完整)污水处理厂施工组织设计
- 浙江履行行政协议决定书(参考格式)
- 幼儿园美术课件 《动物玩偶》课件
- 五金价格报价表参考
- 移动式操作平台施工方案
评论
0/150
提交评论