甘肃省靖远县第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第1页
甘肃省靖远县第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第2页
甘肃省靖远县第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第3页
甘肃省靖远县第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第4页
甘肃省靖远县第二中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省靖远县第二中学2025届数学高一下期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则2.已知是第三象限的角,若,则A. B. C. D.3.若对任意,不等式恒成立,则a的取值范围为()A. B. C. D.4.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,5.在等差数列an中,若a3+A.6 B.7 C.8 D.96.在中,角A,B,C所对的边分别为a,b,c,且满足,若,则周长的最大值为()A.9 B.10 C.11 D.127.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.8.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.1829.已知向量,,则()A. B. C. D.10.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和,那么数列的通项公式为__________.12.设为虚数单位,复数的模为______.13.正项等比数列中,,,则公比__________.14.在中,若,则等于__________.15.在边长为2的菱形中,,是对角线与的交点,若点是线段上的动点,且点关于点的对称点为,则的最小值为______.16.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的前项和为,且(是常数,),.(1)求的值及数列的通项公式;(2)设,求数列的前项和为.18.中,内角,,所对的边分别是,,,已知.(1)求角的大小;(2)设,的面积为,求的值.19.若是公差不为0的等差数列的前n项和,且成等比数列.(1)求数列的公比.(2)若,求的通项公式.20.如图所示,已知三棱锥的侧棱长都为1,底面ABC是边长为的正三角形.(1)求三棱锥的表面积;(2)求三棱锥的体积.21.已知等差数列的前n项和为,且,.(1)求;(2)设数列的前n项和为,求证:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.2、D【解析】

根据是第三象限的角得,利用同角三角函数的基本关系,求得的值.【详解】因为是第三象限的角,所以,因为,所以解得:,故选D.【点睛】本题考查余弦函数在第三象限的符号及同角三角函数的基本关系,即已知值,求的值.3、D【解析】

对任意,不等式恒成立,即恒成立,代入计算得到答案.【详解】对任意,不等式恒成立即恒成立故答案为D【点睛】本题考查了不等式恒成立问题,意在考查学生的计算能力和解决问题的能力.4、A【解析】

分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.5、C【解析】

通过等差数列的性质可得答案.【详解】因为a3+a9=17【点睛】本题主要考查等差数列的性质,难度不大.6、D【解析】

利用正弦定理和三角函数关系式,求得的值,由角的范围求出角的的大小,再由条件和余弦定理列出方程,结合基本不等式,即可求解.【详解】由,根据正弦定理可得,因为,所以,所以,即,又由,所以,由余弦定理可得,又因为,当且仅当时等号成立,又由,所以,即,所以三角形的周长的最大值为.故选:D.【点睛】本题主要考查了正弦定理、余弦定理和正弦函数的性质,以及基本不等式的应用综合应用,着重考查了推理与运算能力,属于中档试题.7、B【解析】

试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.8、B【解析】

由,可得,可得的值.【详解】解:已知等差数列中,可得,即:,,故选B【点睛】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.9、D【解析】

根据平面向量的数量积,计算模长即可.【详解】因为向量,,则,,故选:D.【点睛】本题考查了平面向量的数量积与模长公式的应用问题,是基础题.10、D【解析】

由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

运用数列的递推式即可得到数列通项公式.【详解】数列的前项和,当时,得;当时,;综上可得故答案为:【点睛】本题考查数列的通项与前项和的关系,考查分类讨论思想的运用,求解时要注意把通项公式写成分段的形式.12、5【解析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【详解】由题意,复数,则复数的模为.故答案为5【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

根据题意,由等比数列的性质可得,进而分析可得答案.【详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.14、;【解析】

由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.15、-6【解析】

由题意,然后结合向量共线及数量积运算可得,再将已知条件代入求解即可.【详解】解:菱形的对称性知,在线段上,且,设,则,所以,又因为,当时,取得最小值-6.故答案为:-6.【点睛】本题考查了平面向量的线性运算,重点考查了向量共线及数量积运算,属中档题.16、1【解析】

利用线面平行的性质定理来进行解答.【详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【点睛】本题考查线面平行的性质定理,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先令得出,再令,利用作差法得出,于此得出,可由和的值求出等差数列的公差,于此可求出等差数列的通项公式;(2)先求出数列的通项公式,再利用错位相减法求出数列的前项和.【详解】(1)因为,所以当时,,解得.当时,,即.解得,所以,解得,则.数列的公差.所以;(2)因为,所以,①,②由①-②可得,所以.【点睛】本题考查等差数列通项的求解,考查错位相减法求和,解题时要注意错位相减求和法所适用数列通项的结构类型,要熟练错位相减法求和的基本步骤,难点在于计算量较大,属于中等题.18、(1)(2)【解析】

(1)利用正弦定理可将已知等式化为,利用两角和差余弦公式展开整理可求得,根据可求得结果;(2)利用三角形面积公式可构造方程求出;利用余弦定理可直接求得结果.【详解】(1)由正弦定理可得:,即(2)设的面积为,则由得:,解得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、三角形面积公式和余弦定理的应用;关键是能够通过正弦定理将边化角,得到角的一个三角函数值,从而根据角的范围求得结果.19、(1)公比为4;(2)【解析】

(1)设,然后根据相关条件去计算公比;(2)由(1)的结论计算的表达式,然后再计算的通项公式.【详解】(1)设.∴,∴,.∴,即的公比为4(2)∵,∴,即,当时,,当时,符合,∴【点睛】(1)已知等差数列的三项成等比数列,可利用首项和公差将等式列出,找到首项和公差的关系;(2)利用计算通项公式时,要注意验证的情况.20、(1)(2)【解析】

(1)分析得到侧面均为等腰直角三角形,再求每一个面的面积即得解;(2)先证明平面SAB,再求几何体体积.【详解】(1)如图三棱锥的侧棱长为都为1,底面为正三角形且边长为,所以侧面均为等腰直角三角形.又,所以,又,.(2)因为侧棱SB,SA,SC互相垂直,平面SAB,所以平面SAB,.【点睛】本题主要考查线面位置关系的证明,考查面积和体积的计算,意在考查学生对这些知识的理解掌握水平.21、(1);(2)见解析【解析】

(1)设公差为,由,可得解得,,从而可得结果;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论