山东省新泰一中2025届高一下数学期末检测试题含解析_第1页
山东省新泰一中2025届高一下数学期末检测试题含解析_第2页
山东省新泰一中2025届高一下数学期末检测试题含解析_第3页
山东省新泰一中2025届高一下数学期末检测试题含解析_第4页
山东省新泰一中2025届高一下数学期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省新泰一中2025届高一下数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在平面直角坐标系xOy中,角α0≤α≤π的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转π2至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数A. B.C. D.2.若,是不同的直线,,是不同的平面,则下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则3.棱长为2的正四面体的表面积是()A. B.4 C. D.164.已知菱形的边长为,则()A. B. C. D.5.已知等差数列的公差,前项和为,则对正整数,下列四个结论中:(1)成等差数列,也可能成等比数列;(2)成等差数列,但不可能成等比数列;(3)可能成等比数列,但不可能成等差数列;(4)不可能成等比数列,也不叫能成等差数列.正确的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)6.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.8.若则一定有()A. B. C. D.9..在各项均为正数的等比数列中,若,则…等于()A.5 B.6 C.7 D.810.若直线被圆截得弦长为4,则的最小值是()A.9 B.4 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象向左平移个单位长度,得到函数的图象,则__________.12.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)13.如图,已知六棱锥的底面是正六边形,平面,,给出下列结论:①;②直线平面;③平面平面;④异面直线与所成角为;⑤直线与平面所成角的余弦值为.其中正确的有_______(把所有正确的序号都填上)14.直线和将单位圆分成长度相等的四段弧,则________.15.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.16.在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少?(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?18.设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.19.已知集合,数列的首项,且当时,点,数列满足.(1)试判断数列是否是等差数列,并说明理由;(2)若,求的值.20.已知圆,直线平分圆.(1)求直线的方程;(2)设,圆的圆心是点,对圆上任意一点,在直线上是否存在与点不重合的点,使是常数,若存在,求出点坐标;若不存在,说明理由.21.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】BQ=|y点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.2、C【解析】

A中平面,可能垂直也可能平行或斜交,B中平面,可能平行也可能相交,C中成立,D中平面,可能平行也可能相交.【详解】A中若,,,平面,可能垂直也可能平行或斜交;B中若,,,平面,可能平行也可能相交;同理C中若,,则,分别是平面,的法线,必有;D中若,,,平面,可能平行也可能相交.故选C项.【点睛】本题考查空间中直线与平面,平面与平面的位置关系,属于简单题.3、C【解析】

根据题意求出一个面的面积,然后乘以4即可得到正四面体的表面积.【详解】每个面的面积为,∴正四面体的表面积为.【点睛】本题考查正四面体的表面积,正四面体四个面均为正三角形.4、D【解析】

由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【详解】由菱形的性质可以得出:所以选择D【点睛】直接考查向量数量积公式,属于简单题5、D【解析】试题分析:根据等差数列的性质,,,,因此(1)错误,(2)正确,由上显然有,,,,故(3)错误,(4)正确.即填(2)(4).考点:等差数列的前项和,等差数列与等比数列的定义.6、C【解析】

由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.7、C【解析】

先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.8、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选9、C【解析】因为数列为等比数列,所以,所以.10、A【解析】

圆方程配方后求出圆心坐标和半径,知圆心在已知直线上,代入圆心坐标得满足的关系,用“1”的代换结合基本不等式求得的最小值.【详解】圆标准方程为,圆心为,半径为,直线被圆截得弦长为4,则圆心在直线上,∴,,又,∴,当且仅当,即时等号成立.∴的最小值是1.故选:A.【点睛】本题考查用基本不等式求最值,解题时需根据直线与圆的位置关系求得的关系,然后用“1”的代换法把凑配出可用基本不等式的形式,从而可求得最值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先利用辅助角公式将函数的解析式化简,根据三角函数的变化规律求出函数的解析式,即可计算出的值.【详解】,由题意可得,因此,,故答案为.【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为(或)的形式,其次要注意左加右减指的是在自变量上进行加减,考查计算能力,属于中等题.12、【解析】

根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.13、①③④⑤【解析】

设出几何体的边长,根据正六边形的性质,线面垂直的判定定理,线面平行的判定定理,面面垂直的判定定理,异面直线所成角,线面角有关知识,对五个结论逐一分析,由此得出正确结论的序号.【详解】设正六边形长为,则.根据正六边形的几何性质可知,由平面得,所以平面,所以,故①正确.由于,而,所以直线平面不正确,故②错误.易证得,所以平面,所以平面平面,故③正确.由于,所以是异面直线与所成角,在中,,故,也即异面直线与所成角为,故④正确.连接,则,由①证明过程可知平面,所以平面,所以是所求线面角,在三角形中,,由余弦定理得,故⑤正确.综上所述,正确的序号为①③④⑤.【点睛】本小题主要考查线面垂直的判定,面面垂直的判定,考查线线角、线面角的求法,属于中档题.14、0【解析】

将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【点睛】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.15、【解析】

设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.16、6.【解析】

根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第层悬挂红灯数为,向下依次为且即从上往下数第二层有盏灯本题正确结果;【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)312(2)【解析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,,然后利用导数求其最值.试题解析:解:(1)由PO1=2知OO1=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积正四棱柱ABCD-A1B1C1D1的体积所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,OO1=4h.连结O1B1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V是单调增函数;当时,,V是单调减函数.故时,V取得极大值,也是最大值.因此,当m时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.18、(1)an=2n﹣1;(2).【解析】

(1)用首项和公差表示出已知关系,求出,可得通项公式;(2)由等差数列前项和公式得结论.【详解】(1)在递增等差数列{an}中,设公差为d>0,∵,∴,解得.∴an=﹣3+(n﹣1)×2=2n﹣1.(2)由(1)知,.【点睛】本题考查等差数列的通项公式和前项和公式,解题方法是基本量法.19、(1)是;(2).【解析】

(1)依据题意,写出递推式,由等差数列得定义即可判断;(2)求出,利用极限知识,求出,即可求得的值。【详解】(1)当时,点,所以,即由得,当时,,将代入,,故数列是以为公差的等差数列。(2)因为,所以,,由得,,,故,。【点睛】本题主要考查等差数列的定义和通项公式的运用,以及数列极限的运算。20、(1)直线的方程为.(2)见解析【解析】

(1)结合直线l平分圆,则可知该直线过圆心,代入圆心坐标,计算参数,即可.(2)结合A,M坐标,计算直线AM方程,采取假设法,假设存在该点,计算,对应项成比例,计算参数t,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论