版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市利津县一中2025届数学高一下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△中,点是上一点,且,是中点,与交点为,又,则的值为()A. B. C. D.2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人最后一天走的路程为().A.24里 B.12里 C.6里. D.3里3.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数4.若a<b,则下列不等式中正确的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc25.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.96.若点,关于直线l对称,则l的方程为()A. B.C. D.7.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A. B. C. D.8.若向量,的夹角为60°,且||=2,||=3,则|2|=()A.2 B.14 C.2 D.89.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.10.在中,角所对的边分别为,若的面积,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角,,所对的边分别为,,,若,则为______三角形.12.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:宽带租户业主已安装未安装则该小区已安装宽带的居民估计有______户.13.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.14.若数列满足,,则______.15.已知中,内角A,B,C的对边分别为a,b,c,,,则的面积为______;16.已知角满足,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若是的一个内角,且,求的值.18.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱维P-ABC中,PA⊥底面ABC.(1)从三棱锥P-ABC中选择合适的两条棱填空_________⊥________,则该三棱锥为“鳖臑”;(2)如图,已知AD⊥PB垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(i)证明:平面ADE⊥平面PAC;(ii)作出平面ADE与平面ABC的交线l,并证明∠EAC是二面角E-l-C的平面角.(在图中体现作图过程不必写出画法)19.已知函数(1)解不等式;(2)若对一切,不等式恒成立,求实数的取值范围.20.已知函数f(x)=sinωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为.(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.21.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:因为三点共线,所以可设,又,所以,,将它们代入,即有,由于不共线,从而有,解得,故选择D.考点:向量的基本运算及向量共线基本定理.2、C【解析】
由题意可知,每天走的路程里数构成以为公比的等比数列,由求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【详解】解:记每天走的路程里数为,可知是公比的等比数列,由,得,解得:,,故选C.【点睛】本题考查等比数列的通项公式,考查了等比数列的前项和,是基础的计算题.3、B【解析】
利用折线图的性质,结合各选项进行判断,即可得解.【详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【点睛】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.4、C【解析】
利用特殊值对错误选项进行排除,然后证明正确的不等式.【详解】取代入验证可知,A、D选项错误;取代入验证可知,B选项错误.对于C选项,由于,所以,即成立.故选:C【点睛】本小题主要考查不等式的性质,属于基础题.5、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.6、A【解析】
根据A,B关于直线l对称,直线l经过AB中点且直线l和AB垂直,可得l的方程.【详解】由题意可知AB中点坐标是,,因为A,B关于直线l对称,所以直线l经过AB中点且直线l和AB垂直,所以直线l的斜率为,所以直线l的方程为,即,故选:A.【点睛】本题考查直线位置关系的应用,垂直关系利用斜率之积为求解,属于简单题.7、B【解析】
根据三视图还原几何体即可.【详解】由三视图可知,该几何体为一个圆柱内切了一个圆锥,圆锥侧面积为,圆柱上底面积为,圆柱侧面积为,.所以选择B【点睛】本题主要考查了三视图,根据三视图还原几何体常用的方法有:在正方体或者长方体中切割.属于中等题.8、A【解析】
由已知可得||,根据数量积公式求解即可.【详解】||.故选A.【点睛】本题考查平面向量数量积的性质及运算,考查了利用数量积进行向量模的运算求解方法,属于基础题.9、C【解析】
利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10、B【解析】
利用面积公式及可求,再利用同角的三角函数的基本关系式可求,最后利用余弦定理可求的值.【详解】因为,故,所以,因为,故,又,由余弦定理可得,故.故选B.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.二、填空题:本大题共6小题,每小题5分,共30分。11、等腰或直角【解析】
根据正弦定理化简得到,得到,故或,得到答案.【详解】利用正弦定理得到:,化简得到即故或故答案为等腰或直角【点睛】本题考查了正弦定理和三角恒等变换,漏解是容易发生的错误.12、【解析】
计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.13、【解析】
直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.14、【解析】
利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【详解】得,,所以有,因此.故答案为:【点睛】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.15、【解析】
先根据以及余弦定理计算出的值,再由面积公式即可求解出的面积.【详解】因为,所以,所以,所以.故答案为:.【点睛】本题考查解三角形中利用余弦定理求角以及面积公式的运用,难度较易.三角形中,已知两边的乘积和第三边所对的角即可利用面积公式求解出三角形面积.16、【解析】
利用诱导公式以及两角和与差的三角公式,化简求解即可.【详解】解:角满足,可得
则.
故答案为:.【点睛】本题考查两角和与差的三角公式,诱导公式的应用,考查计算能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
本题首先可根据是的一个内角以及得出和,然后对进行平方并化简可得,最后结合即可得出结果.【详解】因为是的一个内角,所以,,因为,所以,,所以,所以.【点睛】本题考查同角三角函数关系的应用,考查的公式为,在运算的过程中一定要注意角的取值范围,考查推理能力,是简单题.18、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)见证明;(ii)见解析【解析】
(1)根据已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先证明PC⊥平面ADE,再证明平面ADE⊥平面PAC;(ii)在平面PBC中,记DE∩BC,=F,连结AF,则AF为所求的l.再证明∠EAC是二面角E-l-C的平面角.【详解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱锥P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD⊂平面PAB,所以BC⊥AD,又AD⊥PB,PB∩BC=B,所以AD⊥平面PBC.又PC⊂平面PBC,所以PC⊥AD,因为AE⊥PC且AE∩AD=A,所以PC⊥平面ADE,因为PC⊂平面PAC,所以平面ADE⊥平面PAC.(ii)在平面PBC中,记DE∩BC=F,连结AF,则AF为所求的l.因为PC⊥平面AED,l⊂平面AED,所以PC⊥l,因为PA⊥平面ABC,l⊂平面ABC,所以PA⊥l,又PA∩PC=P,所以l⊥平面PAC.又AE⊂平面PAC且AC⊂平面PAC,所以AE⊥l,AC⊥l.所以∠EAC就是二面角E-l-C的一个平面角.【点睛】本题主要考查空间线面位置关系,面面角的作图及证明,属于中档题.19、(1);(2)【解析】
(1)根据一元二次不等式的求解方法直接求解即可;(2)将问题转化为恒成立的问题,通过基本不等式求得的最小值,则.【详解】(1)或所求不等式解集为:(2)当时,可化为:又(当且仅当,即时取等号)即的取值范围为:【点睛】本题考查一元二次不等式的求解、恒成立问题的求解问题.解决恒成立问题的关键是通过分离变量的方式,将问题转化为所求参数与函数最值之间的比较问题.20、(1)f(x)=sin.(2)【解析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin2ωx+×-=sin2ωx+cos2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年叉车司机劳动派遣合同
- 门诊部远程医疗服务
- 2024年度集体土地上房屋搬迁补偿合同
- 04版建筑工程施工监理合同
- 2024年度早餐店餐饮房租赁合同
- 2024版智能旅游平台-在线预订系统开发合同
- 经合组织全球治理作用
- 2024版影视制作与发行合同标的
- 2024年兽用药品项目申请报告范文
- 低碳生活的实践与体验考核试卷
- JJF(电子)0036-2019 示波器电流探头校准规范-(高清现行)
- 2020心肌梗死后心力衰竭防治专家共识课件
- 蓄水池防水施工方案
- 隧道的衬砌计算(85页清楚明了)
- 人教版八年级(初二)数学上册全册课件PPT
- Q∕GDW 10202-2021 国家电网有限公司应急指挥中心建设规范
- CNAS-CL01:2018(ISO17025:2017)改版后实验室首次内审及管理评审资料汇总
- 护理不良事件-PPT课件
- 商业银行两地三中心数据容灾备份方案建议书
- 审核评估报告(课堂PPT)
- 体育运动中的二次函数
评论
0/150
提交评论