版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届淮北市重点中学高一下数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在平行六面体中,M,N分别是所在棱的中点,则MN与平面的位置关系是()A.MN平面B.MN与平面相交C.MN平面D.无法确定MN与平面的位置关系2.已知,则下列不等式成立的是()A. B. C. D.3.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则4.若点,关于直线l对称,则l的方程为()A. B.C. D.5.在△ABC中,若asinA+bsinB<csinC,则△ABC是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.都有可能6.已知数列{an}满足a1=1,an+1=pan+q,且a2=3,a4=15,则p,q的值为()A. B. C.或 D.以上都不对7.不等式所表示的平面区域是()A. B.C. D.8.已知角的终边过点,则()A. B. C. D.9.对一切,恒成立,则实数的取值范围是()A. B.C. D.10.已知点,点,点在圆上,则使得为直角三角形的点的个数为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.把数列的所有数按照从大到小的原则写成如下数表:第行有个数,第行的第个数(从左数起)记为,则________.12.已知函数一个周期的图象(如下图),则这个函数的解析式为__________.13.设不等式组所表示的平面区域为D.若直线与D有公共点,则实数a的取值范围是_____________.14.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.15.若,则__________.(结果用反三角函数表示)16.已知,,若,则实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)解不等式;(2)若对一切,不等式恒成立,求实数的取值范围.18.在ΔABC中,角A,B,C的对边分别为a,b,c,且满足3(b(1)求角B的大小;(2)若ΔABC的面积为32,B是钝角,求b19.请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?20.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?21.已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
取的中点,连结,可证明平面平面,由于平面,可知平面.【详解】取的中点,连结,显然,因为平面,平面,所以平面,平面,又,故平面平面,又因为平面,所以平面.故选C.【点睛】本题考查了直线与平面的位置关系,考查了线面平行、面面平行的证明,属于基础题.2、D【解析】
利用排除法,取,,可排除错误选项,再结合函数的单调性,可证明D正确.【详解】取,,可排除A,B,C,由函数是上的增函数,又,所以,即选项D正确.故选:D.【点睛】本题考查不等式的性质,考查学生的推理论证能力,属于基础题.3、B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.4、A【解析】
根据A,B关于直线l对称,直线l经过AB中点且直线l和AB垂直,可得l的方程.【详解】由题意可知AB中点坐标是,,因为A,B关于直线l对称,所以直线l经过AB中点且直线l和AB垂直,所以直线l的斜率为,所以直线l的方程为,即,故选:A.【点睛】本题考查直线位置关系的应用,垂直关系利用斜率之积为求解,属于简单题.5、A【解析】
由正弦定理化已知条件为边的关系,然后由余弦定理可判断角的大小.【详解】∵asinA+bsinB<csinC,∴,∴,∴为钝角.故选A.【点睛】本题考查正弦定理与余弦定理,考查三角形形状的判断,属于基础题.6、C【解析】
根据数列的递推公式得、建立方程组求得.【详解】由已知得:所以解得:或.故选C.【点睛】本题考查数列的递推公式,属于基础题.7、D【解析】
根据二元一次不等式组表示平面区域进行判断即可.【详解】不等式组等价为或则对应的平面区域为D,
故选:D.【点睛】本题主要考查二元一次不等式组表示平区域,比较基础.8、D【解析】
首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【详解】由已知得,则.故选D【点睛】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.9、B【解析】
先求得的取值范围,根据恒成立问题的求解策略,将原不等式转化为,再解一元二次不等式求得的取值范围.【详解】解:对一切,恒成立,转化为:的最大值,又知,的最大值为;所以,解得或.故选B.【点睛】本小题主要考查恒成立问题的求解策略,考查三角函数求最值的方法,考查一元二次不等式的解法,考查化归与转化的数学思想方法,属于中档题.10、D【解析】
分、、是直角三种情况讨论,求出点的轨迹,将问题转化为点的轨迹图形与圆的公共点个数问题,即可得出正确选项.【详解】①若为直角,则,设点,,,则,即,此时,点的轨迹是以点为圆心,以为半径的圆,圆与圆的圆心距为,,则圆与圆的相交,两圆的公共点个数为;②若为直角,由于直线的斜率为,则直线的斜率为,直线的方程为,即,圆的圆心到直线的距离为,则直线与圆相交,直线与圆有个公共点;③若为直角,则直线的方程为,圆的圆心到直线的距离为,直线与圆相离,直线与圆没有公共点.综上所述,使得为直角三角形的点的个数为.故选:D.【点睛】本题考查符合条件的直角三角形的顶点个数,解题的关键在于将问题转化为直线与圆、圆与圆的公共点个数之和的问题,同时也考查了轨迹方程的求解,考查化归与转化思想以及分类讨论思想的应用,属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
第行有个数知每行数的个数成等比数列,要求,先要求出,就必须求出前行一共出现了多少个数,根据等比数列的求和公式可求,而由可知,每一行数的分母成等差数列,可求出,令,即可求出.【详解】由第行有个数,可知每一行数的个数成等比数列,首项是,公比是,所以,前行共有个数,所以,第行第一个数为,,因此,.故答案为:.【点睛】本题考查数列的性质和应用,解题时要注意数阵的应用,同时要找出数阵的规律,考查推理能力,属于中等题.12、【解析】
由函数的图象可得T=﹣,解得:T==π,解得ω=1.图象经过(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式为:f(x)=.故答案为f(x)=.13、【解析】
画出不等式组所表示的平面区域,直线过定点,根据图像确定直线斜率的取值范围.【详解】画出不等式组所表示的平面区域如下图所示,直线过定点,由图可知,而,所以.故填:.【点睛】本小题主要考查不等式表示区域的画法,考查直线过定点问题,考查直线斜率的取值范围的求法,属于基础题.14、【解析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15、;【解析】
由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.16、【解析】
利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据一元二次不等式的求解方法直接求解即可;(2)将问题转化为恒成立的问题,通过基本不等式求得的最小值,则.【详解】(1)或所求不等式解集为:(2)当时,可化为:又(当且仅当,即时取等号)即的取值范围为:【点睛】本题考查一元二次不等式的求解、恒成立问题的求解问题.解决恒成立问题的关键是通过分离变量的方式,将问题转化为所求参数与函数最值之间的比较问题.18、(1)B=π3或2π【解析】
(1)由正弦定理和三角恒等变换的公式,化简得3sin(A+B)=2sinBsin(2)由(1)和三角形的面积公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【详解】(1)由题意,知3(b结合正弦定理得:3(即3sin又在△ABC中,sin(A+B)=sinC>0因为B∈(0,π)所以B=π3或(2)由三角形的面积公式,可得12又由sinB=32因为B是钝角,所以B=2π由余弦定理得b2当且仅当a=c时取等号,所以b的最小值为6.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于中档试题.19、在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大【解析】
可建立如图所示的平面直角坐标系,根据截距式写出AB所在直线方程,然后可设G点的坐标为,再根据题目中的要求可列出教学楼的面积的表达式,,然后利用一元二次函数求最值即可.【详解】解:如图建立坐标系,可知所在直线方程为,即.设,由可知.∴.由此可知,当时,有最大值289平方米.故在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大.【点睛】本题考查一元二次函数求最值解决实际问题,属于中档题20、(1)见解析(2)当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.【解析】试题分析:(1)根据利润等于收入减成本列式:,由投入的肥料费用不超过5百元及实际意义得定义域,(2)利用基本不等式求最值:先配凑:,再根据一正二定三相等求最值.试题解析:解:(1)().(2).当且仅当时,即时取等号.故.答:当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经营贷款用途合同范例
- 石头底座采购合同模板
- 简易门窗合同范例
- 2024年度融资租赁合同范本(租赁物及租赁条件详细)
- 2024版股权激励协议:高科技企业员工股权激励计划
- 二零二四年度版权买卖合同:某图书的版权买卖合同
- 二零二四年考古测绘及保护合同
- 2024年度餐饮加盟协议:品牌使用与经营权分配准则
- 股份合作协议书范文
- 2024年度版权许可使用与授权协议
- 初级社工师培训
- 高考小说专题复习-人物形象
- DLT 866-2015 电流互感器和电压互感器选择及计算规程解读
- 小班数学活动《按颜色分类》课件
- 我的生涯发展展示
- 物流调度晋升述职报告
- 消防车辆与装备的使用指南
- 人教版pep五年级英语上下全册各课时教学反思
- 公司员工集资计划书
- 校车发展方案
- 急性疼痛治疗和APS服务课件
评论
0/150
提交评论