2025届河南省永城市高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2025届河南省永城市高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2025届河南省永城市高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2025届河南省永城市高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2025届河南省永城市高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省永城市高一数学第二学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中是偶函数且最小正周期为的是()A. B.C. D.2.已知,若、、三点共线,则为()A. B. C. D.23.已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A.1 B.2 C.3 D.44.若,A点的坐标为,则B点的坐标为()A. B. C. D.5.在中,内角所对的边分别是.已知,,,则A. B. C. D.6.已知定义域的奇函数的图像关于直线对称,且当时,,则()A. B. C. D.7.一个几何体的三视图如图所示,则这个几何的体积为()立方单位.A. B.C. D.8.已知向量与的夹角为,,,当时,实数为()A. B. C. D.9.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.10.平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:__________.12.在等比数列{an}中,a113.已知直线l与圆C:交于A,B两点,,则满足条件的一条直线l的方程为______.14.若是三角形的内角,且,则等于_____________.15.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.16.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为100且支出在元的样本,其频率分布直方图如图,则支出在元的同学人数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:)的数据如下:甲273830373531乙332938342836试判断选谁参加某项重大比赛更合适.18.在中,角,,所对的边为,,,向量与向量共线.(1)若,求的值;(2)若为边上的一点,且,若为的角平分线,求的取值范围.19.已知圆与轴交于两点,且(为圆心),过点且斜率为的直线与圆相交于两点(Ⅰ)求实数的值;(Ⅱ)若,求的取值范围;(Ⅲ)若向量与向量共线(为坐标原点),求的值20.已知函数f(1)求fx(2)若fx<m+2在x∈0,21.已知圆圆心坐标为点为坐标原点,轴、轴被圆截得的弦分别为、.(1)证明:的面积为定值;(2)设直线与圆交于两点,若,求圆的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

本题首先可将四个选项都转化为的形式,然后对四个选项的奇偶性以及周期性依次进行判断,即可得出结果.【详解】中,函数,是偶函数,周期为;中,函数是奇函数,周期;中,函数,是非奇非偶函数,周期;中,函数是偶函数,周期.综上所述,故选A.【点睛】本题考查对三角函数的奇偶性以及周期性的判断,考查三角恒等变换,偶函数满足,对于函数,其最小正周期为,考查化归与转化思想,是中档题.2、C【解析】

由平面向量中的三点共线问题可得:,由基本定理及线性运算可得:即得解.【详解】因为,若,,三点共线则,解得,即即即即故选:【点睛】本题考查平面向量基本定理和共线定理,属于基础题.3、B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在两条异面直线,,,,,,由面面平行的判定定理得,故正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选4、A【解析】

根据向量坐标的求解公式可求.【详解】设,因为A点的坐标为,所以.所以,即.故选:A.【点睛】本题主要考查平面向量坐标的运算,侧重考查数学运算的核心素养.5、B【解析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.6、D【解析】

根据函数的图像关于直线对称可得,再结合奇函数的性质即可得出答案.【详解】解:∵函数的图像关于直线对称,∴,∴,∵奇函数满足,当时,,∴,故选:D.【点睛】本题主要考查函数的奇偶性与对称性的综合应用,属于基础题.7、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.8、B【解析】

利用平面向量数量积的定义计算出的值,由可得出,利用平面向量数量积的运算律可求得实数的值.【详解】,,向量与的夹角为,,,,解得.故选:B.【点睛】本题考查利用向量垂直求参数,考查计算能力,属于基础题.9、A【解析】,向左平移个单位得到函数=,故10、A【解析】

试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.延长,过作,连接,则为,同理为,而,则所成的角即为所成的角,即为,故所成角的正弦值为,选A.【点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.12、64【解析】由题设可得q3=8⇒q=3,则a713、(答案不唯一)【解析】

确定圆心到直线的距离,即可求直线的方程.【详解】由题意得圆心坐标,半径,,∴圆心到直线的距离为,∴满足条件的一条直线的方程为.故答案为:(答案不唯一).【点睛】本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.14、【解析】∵是三角形的内角,且,∴故答案为点睛:本题是一道易错题,在上,,分两种情况:若,则;若,则有两种情况锐角或钝角.15、【解析】

根据众数的定义求出的值,再根据中位数的定义进行求解即可.【详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【点睛】本题考查了众数和中位数的定义,属于基础题.16、30【解析】

由频率分布直方图求出支出在元的概率,由此能力求出支出在元的同学的人数,得到答案.【详解】由频率分布直方图,可得支出在元的概率,,所以支出在元的同学的人数为人.【点睛】本题主要考查了频率分布直方图的应用,以及概率的计算,其中解答中熟记频率分布直方图的性质,合理求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、乙,理由见解析.【解析】

分别求解两人的测试数据的平均数和方差,然后进行判定.【详解】甲的平均数为:,方差为:;乙的平均数为:,方差为:;因为,,所以选择乙参加比赛较为合适.【点睛】本题主要考查统计量的求解及决策问题,平均数表示平均水平的高低,方差表示稳定性,侧重考查数据分析的核心素养.18、(1)32;(2)【解析】

由两向量坐标以及向量共线,结合正弦定理,化简可得(1)由,,代入原式化简,即可得到答案;(2)在和在中,利用正弦定理,化简可得,,代入原式,化简即可得到,利用三角形的内角范围结合三角函数的值域,即可求出的取值范围.【详解】向量与向量共线所以,由正弦定理得:.即,由于在中,,则,所以,由于,则.(1),.(2)因为,为的角平分线,所以,在中,,因为,所以,所以在中,,因为,所以,所以,则,因为,所以,所以,即的取值范围为.【点睛】本题主要考查向量共线、正弦定理、二倍角公式、三角函数的值域等知识,考查学生转化与求解能力,考查学生基本的计算能力,有一定综合性.19、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(Ⅰ)由圆的方程得到圆心坐标和;根据、为等腰直角三角形可知,从而得到,解方程求得结果;(Ⅱ)设直线方程为;利用点到直线距离公式求得圆心到直线距离;由垂径定理可得到,利用可构造不等式求得结果;(Ⅲ)直线方程与圆方程联立,根据直线与圆有两个交点可根据得到的取值范围;设,,利用韦达定理求得,并利用求得,即可得到;利用向量共线定理可得到关于的方程,解方程求得满足取值范围的结果.【详解】(Ⅰ)由圆得:圆心,由题意知,为等腰直角三角形设的中点为,则也为等腰直角三角形,解得:(Ⅱ)设直线方程为:则圆心到直线的距离:由,,可得:,解得:的取值范围为:(Ⅲ)联立直线与圆的方程:消去变量得:设,,由韦达定理得:且,整理得:解得:或,与向量共线,,解得:或不满足【点睛】本题考查直线与圆位置关系的综合应用,涉及到圆的方程的求解、垂径定理的应用、平面向量共线定理的应用;求解直线与圆位置关系综合应用类问题的常用方法是灵活应用圆心到直线的距离、直线与圆方程联立,韦达定理构造方程等方法,属于常考题型.20、(1)kπ-5π12【解析】

(1)注意到,f=-(sin2x+3cos2x)+1于是,fx的最小正周期T=由2kπ-π故fx的单调递减区间为kπ-(2)由x∈0,π6于是,当sin2x+π3=32时,要使fx<m+2恒成立,只需fxmax<m+2故m的取值范围是(-1-321、(1)证明见解析;(2).【解析】

(1)利用几何条件可知,为直角三角形,且圆过原点,所以得知三角形两直角边边长,求得面积;(2)由及原点O在圆上,知OCMN,所以,求出的值,再利用直线与圆的位置关系判断检验,符合题意的解,最后写出圆的方程.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论