福建省邵武七中2025届数学高一下期末质量跟踪监视试题含解析_第1页
福建省邵武七中2025届数学高一下期末质量跟踪监视试题含解析_第2页
福建省邵武七中2025届数学高一下期末质量跟踪监视试题含解析_第3页
福建省邵武七中2025届数学高一下期末质量跟踪监视试题含解析_第4页
福建省邵武七中2025届数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省邵武七中2025届数学高一下期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形2.不等式的解集是()A. B. C. D.3.已知,若,则等于()A. B.1 C.2 D.4.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.5.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④6.函数的最小正周期是()A. B. C. D.7.设某曲线上一动点到点的距离与到直线的距离相等,经过点的直线与该曲线相交于,两点,且点恰为等线段的中点,则()A.6 B.10 C.12 D.148.设函数,则()A.在单调递增,且其图象关于直线对称B.在单调递增,且其图象关于直线对称C.在单调递减,且其图象关于直线对称D.在单调递增,且其图象关于直线对称9.在1和19之间插入个数,使这个数成等差数列,若这个数中第一个为,第个为,当取最小值时,的值是()A.4 B.5 C.6 D.710.若向量,,则点B的坐标为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是第二象限角,且,且______.12.如图,二面角等于,、是棱上两点,、分别在半平面、内,,,且,则的长等于______.13.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.14.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为15.在中,,则_____________16.设α为第二象限角,若sinα=35三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,函数.(1)求函数的最小正周期和单调递减区间;(2)当时,求函数的值域.18.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.19.已知公差不为零的等差数列满足:,且成等比数列.(1)求数列的通项公式.(2)记为数列的前项和,是否存在正整数,使得?若存在,请求出的最小值;若不存在,请说明理由.20.已知向量.(I)当实数为何值时,向量与共线?(II)若向量,且三点共线,求实数的值.21.已知、、是同一平面内的三个向量,其中=(1,2),=(﹣2,3),=(﹣2,m)(1)若⊥(+),求||;(2)若k+与2﹣共线,求k的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.2、A【解析】

分解因式,即可求得.【详解】进行分解因式可得:,故不等式解集为:故选:A.【点睛】本题考查一元二次不等式的求解,属基础知识题.3、A【解析】

首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【点睛】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.4、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.5、B【解析】

利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.6、C【解析】

根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.7、B【解析】由曲线上一动点到点的距离与到直线的距离相等知该曲线为抛物线,其方程为,分别过点向抛物线的准线作垂线,垂足分别为,由梯形的中位线定理知,所以,故选B.8、B【解析】

先将函数化简,再根据三角函数的图像性质判断单调性和对称性,从而选择答案.【详解】

根据选项有,当时,在在上单调递增.又即为的对称轴.当时,为的对称轴.故选:B【点睛】本题考查的单调性和对称性质,属于中档题.9、B【解析】

设等差数列公差为,可得,再利用基本不等式求最值,从而求出答案.【详解】设等差数列公差为,则,从而,此时,故,所以,即,当且仅当,即时取“=”,又,解得,所以,所以,故选:B.【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.10、B【解析】

根据向量的坐标运算得到,得到答案.【详解】,故.故选:.【点睛】本题考查了向量的坐标运算,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.12、1【解析】

由已知中二面角α﹣l﹣β等于110°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案为1.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用,结合向量数量积的运算,是解答本题的关键.13、【解析】

由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题14、【解析】

试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.15、【解析】

先由正弦定理得到,再由余弦定理求得的值.【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题.16、-【解析】

先求出cosα,再利用二倍角公式求sin2α【详解】因为α为第二象限角,若sinα=所以cosα=所以sin2α故答案为-【点睛】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);.(2).【解析】

(1)根据平面向量数量积的坐标运算、三角恒等变换先求出函数的解析式即可由三角函数的性质求出函数的最小正周期和单调递减区间;(2)对于形如的值域问题,要先求出的范围,再根据正弦函数的性质逐步求解即可.【详解】(1)由已知可得,,,令,解之得,所以函数的单调递减区间为(2)因为,当时,,此时,,所以函数的值域为.【点睛】本题主要考查平面向量数量积的坐标运算、三角恒等变换及三角函数的周期、单调区间、值域的求法,试题综合性强,属中等难度题.18、(I);(II).【解析】

(I)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(II)由(I)可得,进而可利用等比数列求和公式进行求解.【详解】(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.19、(1)(2)存在,最小值是.【解析】

(1)利用等比中项的性质列方程,将已知条件转化为的形式列方程组,解方程组求得,由此求得数列的通项公式.(2)首先求得数列的前项和,由列不等式,解一元二次不等式求得的取值范围,由此求得的最小值.【详解】(1)设等差数列的公差为(),由题意得化简,得.因为,所以,解得所以,即数列的通项公式是().(2)由(1)可得.假设存在正整数,使得,即,即,解得或(舍).所以所求的最小值是.【点睛】本小题主要考查等比中项的性质,考查等差数列通项公式的基本量计算,考查等差数列前项和公式,考查一元二次不等式的解法,属于中档题.20、(1)(2)【解析】

(1)利用向量的运算法则、共线定理即可得出;(2)利用向量共线定理、平面向量基本定理即可得出.【详解】(1)kk(1,0)﹣(2,1)=(k﹣2,﹣1).2(1,0)+2(2,1)=(5,2).∵k与2共线∴2(k﹣2)﹣(﹣1)×5=0,即2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论