湖南长沙市麓山国际实验学校2025届高一数学第二学期期末考试模拟试题含解析_第1页
湖南长沙市麓山国际实验学校2025届高一数学第二学期期末考试模拟试题含解析_第2页
湖南长沙市麓山国际实验学校2025届高一数学第二学期期末考试模拟试题含解析_第3页
湖南长沙市麓山国际实验学校2025届高一数学第二学期期末考试模拟试题含解析_第4页
湖南长沙市麓山国际实验学校2025届高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南长沙市麓山国际实验学校2025届高一数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.142.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交3.在中,内角,,的对边分别为,,,且,,为的面积,则的最大值为()A.1 B.2 C. D.4.已知a=log0.92019,b=A.a<c<b B.a<b<c C.b<a<c D.b<c<a5.已知两个非零向量,满足,则()A. B.C. D.6.若直线与直线平行,则A. B. C. D.7.在等比数列中,,,,则等于()A. B. C. D.8.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()A. B. C. D.9.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.610.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为__________.12.函数f(x)=sin22x的最小正周期是__________.13.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).14.函数的定义域是_____.15.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.16.已知正三棱锥的底面边长为6,所在直线与底面所成角为60°,则该三棱锥的侧面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知两点,.(1)求直线AB的方程;(2)直线l经过,且倾斜角为,求直线l与AB的交点坐标.18.的内角所对边分别为,已知.(1)求;(2)若,,求的面积.19.已知对任意,恒成立(其中),求的最大值.20.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).21.如图,三条直线型公路,,在点处交汇,其中与、与的夹角都为,在公路上取一点,且km,过铺设一直线型的管道,其中点在上,点在上(,足够长),设km,km.(1)求出,的关系式;(2)试确定,的位置,使得公路段与段的长度之和最小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

易得从第三项开始数列的每项都为前两项之和,再求解即可.【详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【点睛】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.2、D【解析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D3、C【解析】

先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【详解】因为,所以可化为,即,可得,所以.又由正弦定理得,,所以,当且仅当时,取得最大值.故选C【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.4、A【解析】

根据指数函数的单调性以及对数函数的单调性分别判断出a,b,c的取值范围,从而可得结果.【详解】由对数函数的性质可得a=log由指数函数的性质可得b=20190.9>所以a<c<b,故选A.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间-∞,0,5、C【解析】

根据向量的模的计算公式,由逐步转化为,即可得到本题答案.【详解】由题,得,即,,则,所以.故选:C.【点睛】本题主要考查平面向量垂直的等价条件以及向量的模,化简变形是关键,考查计算能力,属于基础题.6、A【解析】由题意,直线,则,解得,故选A.7、C【解析】

直接利用等比数列公式计算得到答案.【详解】故选:C【点睛】本题考查了等比数列的计算,属于简单题.8、B【解析】,,.选B.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.9、D【解析】

根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【点睛】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.10、B【解析】

根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

用辅助角公式把函数解析式化成正弦型函数解析式的形式,最后利用正弦型函数的最小正周期的公式求出最小正周期.【详解】,函数的最小正周期为.【点睛】本题考查了辅助角公式,考查了正弦型函数最小正周期公式,考查了数学运算能力.12、.【解析】

将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.【详解】函数,周期为【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.13、①③【解析】

①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.14、.【解析】

由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得,即解得,故函数的定义域为.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.15、【解析】

根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【点睛】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.16、【解析】

画出图形,过P做底面的垂线,垂足O落在底面正三角形中心,即,因为,即可求出,所以.【详解】作于,因为为正三棱锥,所以,为中点,连结,则,过作⊥平面,则点为正三角形的中心,点在上,所以,,正三角形的边长为6,则,,,斜高,三棱锥的侧面积为:【点睛】此题考查正三棱锥,即底面为正三角形,侧面为等腰三角形的三棱锥,正四面体为四个面都是正三角形,画出图像,属于简单的立体几何题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据、两点的坐标,得到斜率,再由点斜式得到直线方程;(2)根据的倾斜角和过点,得到的方程,再与直线联立,得到交点坐标.【详解】(1)因为点,,所以,所以方程为,整理得;(2)因为直线l经过,且倾斜角为,所以直线的斜率为,所以的方程为,整理得,所以直线与直线的交点为,解得,所以交点坐标为.【点睛】本题考查点斜式求直线方程,求直线的交点坐标,属于简单题.18、(1);(2)5.【解析】

(1)根据正弦定理得,化简即得C的值;(2)先利用余弦定理求出a的值,再求的面积.【详解】(1)因为,根据正弦定理得,又,从而,由于,所以.(2)根据余弦定理,而,,,代入整理得,解得或(舍去).故的面积为.【点睛】本题主要考查正弦余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.19、的最大值为.【解析】试题分析:利用二倍角公式,利用换元法,将原不等式转化为二次不等式在区间上恒成立,利用二次函数的零点分布进行讨论,从而得出的最大值,但是在对时的情况下,主要对二次函数的对称轴是否在区间进行分类讨论,再将问题转化为的条件下,求的最大值,试题解析:由题意知,令,,则当,恒成立,开口向上,①当时,,不满足,恒成立,②当时,则必有(1)当对称轴时,即,也即时,有,则,,则,当,时,.当对称轴时,即,也即时,则必有,即,又由(1)知,则由于,故只需成立即可,问题转化为的条件下,求的最大值,然后利用代数式的结构特点或从题干中的式子出发,分别利用三角换元法、导数法以及柯西不等式法来求的最大值.法一:(三角换元)把条件配方得:,,所以,;法二:(导数)令则即求函数的导数,椭圆的上半部分;法三:(柯西不等式)由柯西不等式可知:,当且仅当,即及时等号成立.即当时,最大值为2.综上可知.考点:1.二倍角;2.换元法;3.二次不等式的恒成立问题;4.导数;5.柯西不等式20、(1),;(2)x>,是减函数.【解析】

(1)画出图形,分别求出四棱锥的高,及侧面的高的表达式,即可求出表面积与体积的表达式;(2)结合表达式,可求出的范围,即定义域,然后判断其为减函数.【详解】(1)过点作平面的垂线,垂足为,取的中点,连结,因为为正四棱锥,所以,,,,所以四棱锥的表面积为,体积.(2),解得,是减函数.【点睛】本题考查了四棱锥的结构特征,考查了表面积与体积的计算,考查了学生的空间想象能力与计算能力,属于中档题.21、(1)(2)当时,公路段与段的总长度最小【解析】

(1)(法一)观察图形可得,由此根据三角形的面积公式,建立方程,化简即可得到的关系式;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论