版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省海滨学校、港尾中学高一下数学期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,那么()A. B. C. D.2.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.2003.若经过两点、的直线的倾斜角为,则等于()A. B. C. D.4.函数的定义域为()A. B. C. D.5.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π46.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.7.已知圆经过点,且圆心为,则圆的方程为A. B.C. D.8.若,且,,则()A. B. C. D.9.将图像向左平移个单位,所得的函数为()A. B.C. D.10.已知,函数的最小值是()A.4 B.5 C.8 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,关于此函数的说法:①为周期函数;②有对称轴;③为的对称中心;④;正确的序号是_________.12.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则______________.13.已知中,的对边分别为,若,则的周长的取值范围是__________.14.等比数列中,,则公比____________.15.若过点作圆的切线,则直线的方程为_______________.16.的内角的对边分别为.若,则的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.18.如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A处看灯塔C在货轮的北偏西30°,距离为nmile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.19.如图,四棱锥中,底面为矩形,面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离.20.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.21.已知数列满足(,且),且,设,,数列满足.(1)求证:数列是等比数列并求出数列的通项公式;(2)求数列的前n项和;(3)对于任意,,恒成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由,得.故选B.考点:诱导公式.2、B【解析】
根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【点睛】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。3、D【解析】
由直线的倾斜角得知直线的斜率为,再利用斜率公式可求出的值.【详解】由于直线的倾斜角为,则该直线的斜率为,由斜率公式得,解得,故选D.【点睛】本题考查利用斜率公式求参数,同时也涉及了直线的倾斜角与斜率之间的关系,考查计算能力,属于基础题.4、A【解析】
根据对数函数的定义域直接求解即可.【详解】由题知函数,所以,所以函数的定义域是.故选:A.【点睛】本题考查了对数函数的定义域的求解,属于基础题.5、D【解析】
由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.6、B【解析】
结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.7、D【解析】
先计算圆半径,然后得到圆方程.【详解】因为圆经过,且圆心为所以圆的半径为,则圆的方程为.故答案选D【点睛】本题考查了圆方程,先计算半径是解题的关键.8、B【解析】
利用两角和差的正弦公式将β=α-(α﹣β)进行转化求解即可.【详解】β=α-(α﹣β),∵<α,<β,β<,∴α,∵sin()0,∴<0,则cos(),∵sinα,∴cosα,则sinβ=sin[α-(α﹣β)]=sinαcos(α﹣β)-cosαsin(α﹣β)(),故选B【点睛】本题主要考查利用两角和差的正弦公式,同角三角函数基本关系,将β=α-(α﹣β)进行转化是解决本题的关键,是基础题9、A【解析】
根据三角函数的图象的平移变换得到所求.【详解】由已知将函数y=cos2x的图象向左平移个单位,所得的函数为y=cos2(x)=cos(2x);故选:A.【点睛】本题考查了三角函数的图象的平移;明确平移规律是解答的关键.10、A【解析】试题分析:由题意可得,满足运用基本不等式的条件——一正,二定,三相等,所以,故选A考点:利用基本不等式求最值;二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】
由三角函数的性质及,分别对各选项进行验证,即可得出结论.【详解】解:由函数,可得①,可得为周期函数,故①正确;②由,,故,是偶函数,故有对称轴正确,故②正确;③为偶数时,,为奇数时,故不为的对称中心,故③不正确;④由,可得正确,故④正确.故答案为:①②④.【点睛】本题主要考查三角函数的值域、周期性、对称性等相关知识,综合性大,属于中档题.12、1028【解析】图乙中第行有个数,第行最后的一个数为,前行共有个数,由知出现在第45行,第45行第一个数为1937,第个数为2011,所以.[来13、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.14、【解析】
根据题意得到:,解方程即可.【详解】由题知:,解得:.故答案为:【点睛】本题主要考查等比数列的性质,熟练掌握等比数列的性质为解题的关键,属于简单题.15、或【解析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。16、【解析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据三角形的面积公式即可求解.(2)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据二倍角的正弦函数公式可求的值,利用正弦定理可求的值.【详解】(1)当时,,,,,.(2)当时,,,,由正弦定理得:,.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,二倍角的正弦函数公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18、(1)24;(2)8【解析】
(1)利用已知条件,利用正弦定理求得AD的长.(2)在△ADC中由余弦定理可求得CD,答案可得.【详解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦定理得(2)在△ADC中,由余弦定理得CD2=AD2+AC2﹣2AD•ACcos30°,解得CD=.所以A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为nmile.【点睛】点睛:解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.19、(1)证明见解析(2)到平面的距离为【解析】
试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离20、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解析】
(Ⅰ)根据直角三角形,底面积乘高是面积;然后考虑正方形的边长,求出边长之后,即可表示正方形面积;(Ⅱ)化简的表达式,利用基本不等式求最值,注意取等号的条件.【详解】解:(Ⅰ)∵在中,∴,.∴∴,设正方形边长为,则,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在区间上是减函数∴当时,取得最小值,即取得最大值。∴的最大值为此时∴为等腰直角三角形【点睛】(1)函数的实际问题中,不仅要根据条件列出函数解析式时,同时还要注意定义域;(2)求解函数的最值的时候,当取到最值时,一定要添加增加取等号的条件.21、(1)见解析(2)(3).【解析】
(1)将式子写为:得证,再通过等比数列公式得到的通项公式.(2)根据(1)得到进而得到数列通项公式,再利用错位相减法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学校锅炉工环境保护与节能减排合同范本3篇
- 自动打铃器课程设计数电
- 汉川市汽车营销课程设计
- 自动飞行系统课程设计
- 2024年装表接电工(初级工)技能鉴定理论考试复习题库(含答案)
- 2024年美术教案课件
- 童话课程设计封面
- 立式车床主轴箱课程设计
- 小班兔子绘本课程设计
- 金融投资行业顾问工作总结
- 国家自然科学基金申请书模板三篇
- 系统运行维护方案
- 外贸企业海外市场开拓计划书
- (医学课件)护理人文关怀
- 数据采集服务委托合同
- 河长制工作总结报告5篇河长制年度工作总结
- 第二期专题04-短文填空(6选5)-冲刺中考英语必考题型终极预测(深圳专用)
- 民间借贷利息计算表
- 中国偏头痛诊治指南(第一版)2023解读
- 2025年公务员考试申论试题与参考答案
- 2024年秋季新人教PEP版三年级上册英语全册教案
评论
0/150
提交评论