2023-2024学年山东省泰安市宁阳县四中高一数学第二学期期末预测试题含解析_第1页
2023-2024学年山东省泰安市宁阳县四中高一数学第二学期期末预测试题含解析_第2页
2023-2024学年山东省泰安市宁阳县四中高一数学第二学期期末预测试题含解析_第3页
2023-2024学年山东省泰安市宁阳县四中高一数学第二学期期末预测试题含解析_第4页
2023-2024学年山东省泰安市宁阳县四中高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省泰安市宁阳县四中高一数学第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列中,,则().A.110 B.120 C.130 D.1402.已知是等差数列的前项和,.若对恒成立,则正整数构成的集合是()A. B. C. D.3.若a,b是方程的两个根,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值为()A.-4 B.-3 C.-2 D.-14.设数列满足,且,则数列中的最大项为()A. B. C. D.5.某中学初中部共有110名教师,高中部共有150名教师,根据下列频率分布条形图(部分)可知,该校女教师的人数为()A.93 B.123 C.137 D.1676.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.7.已知等比数列an的公比为q,且q<1,数列bn满足bn=anA.-23 B.23 C.8.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.9.已知是第二象限角,()A. B. C. D.10.如图,程序框图所进行的求和运算是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.12.设,其中,则的值为________.13.函数f(x)=coscos的最小正周期为________.14.设数列满足,且,则数列的前n项和_______________.15.已知是定义在上的奇函数,对任意实数满足,,则________.16.在数列中,按此规律,是该数列的第______项三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中.(1)若函数在区间内有一个零点,求的取值范围;(2)若函数在区间上的最大值与最小值之差为2,且,求的取值范围.18.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?19.已知,是平面内两个不共线的非零向量,,,且,,三点共线.(1)求实数的值;(2)若,,求的坐标;(3)已知,在(2)的条件下,若,,,四点按逆时针顺序构成平行四边形,求点的坐标.20.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.21.已知.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

直接运用等差数列的下标关系即可求出的值.【详解】因为数列是等差数列,所以,因此,故本题选B.【点睛】本题考查了等差数列下标性质,考查了数学运算能力.2、A【解析】

先分析出,即得k的值.【详解】因为因为所以.所以,所以正整数构成的集合是.故选A【点睛】本题主要考查等差数列前n项和的最小值的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3、D【解析】

由韦达定理确定,,利用已知条件讨论成等差数列和等比数列的位置,从而确定的值.【详解】由韦达定理得:,,所以,由题意这三个数可适当排序后成等比数列,且,则2一定在中间所以,即因为这三个数可适当排序后成等差数列,且,则2一定不在的中间假设,则即故选D【点睛】本题考查了等差数列和等比数列的基本性质,解决本题的关键是要掌握三个数成等差数列和等比数列的性质,如成等比数列,且,,则2必为等比中项,有.4、A【解析】

利用累加法求得的通项公式,再根据的单调性求得最大项.【详解】因为故故则,其最大项是的最小项的倒数,又,当且仅当或时,取得最小值7.故得最大项为.故选:A.【点睛】本题考查由累加法求数列的通项公式,以及数列的单调性,属综合基础题.5、C【解析】.6、D【解析】

求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.7、A【解析】

由题可知数列{an}【详解】因为数列{bn}有连续四项在集合{-28,-19,-13,7,17,23}中,bn=an-1,所以数列{an}有连续四项在集合{-27,-18,-12,8,18,24}中,所以数列{an}的连续四项不同号,即【点睛】本题主要考查等比数列的综合应用,意在考查学生的分析能力,逻辑推理能力,分类讨论能力,难度较大.8、D【解析】

根据题意,由不等式的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【点睛】本题考查不等式的性质,对于错误的结论举出反例即可.9、A【解析】cosα=±=±,又∵α是第二象限角,∴cosα=-.10、A【解析】

根据当型循环结构,依次代入计算的值,即可得输出的表达式.【详解】根据循环结构程序框图可知,,,,…,,跳出循环体,所以结果为,故选:A.【点睛】本题考查了当型循环结构的应用,执行循环体计算输出值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

首先求出圆锥体的体积,然后与近似公式对比,即可求出公式中取的近似值.【详解】由题知圆锥体的体积,因为圆锥的底面周长为,所以圆锥的底面面积,所以圆锥体的体积,根据题意与近似公式对比发现,公式中取的近似值为.故答案为:.【点睛】本题考查了圆锥体的体积公式,属于基础题.12、【解析】

由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.13、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期为T==214、【解析】令15、【解析】

由奇函数的性质得出,由题中等式可推出函数是以为周期的周期函数,再利用周期性和奇偶性求出的值.【详解】函数是定义在上的奇函数,则,且对任意实数满足,,所以,函数是以为周期的周期函数,,,因此,,故答案为:.【点睛】本题考查抽象函数求值,利用题中条件推导出函数的周期是解题的关键,在计算时充分利用函数的周期性将自变的值的绝对值变小,考查逻辑推理能力与计算能力,属于中等题.16、【解析】

分别求出,,,结果构成等比数列,进而推断数列是首相为2,公比为2的等比数列,进而求得数列的通项公式,再由求得答案.【详解】,,,依此类推可得,,,即.,解得.故答案为:7.【点睛】本题考查利用数列的递推关系求数列的通项公式,求解的关键在于推断是等比数列,再用累加法求得数列的通项公式,考查逻辑推理能力和运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)解方程的根,则根在区间内,即可求出的范围即可;(2)根据函数的单调性求出最大,最小,作差得,从而得到关于的不等式,解出即可.【详解】(1)由,得,由得:,所以的范围是.(2)在递增,,,,,由,得,,解得:.【点睛】本题考查对数函数的性质、函数的单调性、最值等问题,考查转化与化归思想,求解过程中要会灵活运用换元法进行问题解决.18、当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【解析】

将问题转化为解方程和解不等式,以及,分别求解即可.【详解】由题:由得:或;由得:;由得:或,综上所述:当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【点睛】此题考查解二次方程和二次不等式,关键在于熟练掌握二次方程和二次不等式的解法,准确求解.19、(1);(2);(3).【解析】

(1)根据,,三点共线,列出向量与共线的表达式,然后根据坐标求解即可;(2)根据,列坐标即可求解;(3)根据平行四边形可以推出对边的向量相等,根据向量相等代入坐标求解即可求出点的坐标.【详解】(1),∵,,三点共线,∴存在实数,使得,即,得,∵,是平面内两个不共线的非零向量,∴,解得,;(2);(3)∵,,,四点按逆时针顺序构成平行四边形,∴,设,则,∵,∴,解得,即点的坐标为.【点睛】本题主要考查了平面向量共线,平面向量的线性运算,平面向量的相等,属于一般题.20、(1).(2)见解析.【解析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和21、(1);(2).【解析】试题分析:(1)要求的值,根据两角和的正弦公式,可知还要求得,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论