福建省泉州市2024年数学高一下期末考试模拟试题含解析_第1页
福建省泉州市2024年数学高一下期末考试模拟试题含解析_第2页
福建省泉州市2024年数学高一下期末考试模拟试题含解析_第3页
福建省泉州市2024年数学高一下期末考试模拟试题含解析_第4页
福建省泉州市2024年数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市2024年数学高一下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,扇形的圆心角为,半径为1,则该扇形绕所在直线旋转一周得到的几何体的表面积为(

)A. B. C. D.2.若则一定有()A. B. C. D.3.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.4.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.205.设集合,则()A. B. C. D.6.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.7.设、满足约束条件,则的最大值为()A. B.C. D.8.中,角的对边分别为,且,则角()A. B. C. D.9.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.10.下列函数中,既是偶函数又在上是单调递减的是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______.12.数列中,若,,则______;13.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.14.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=515.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)16.若直线始终平分圆的周长,则的最小值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正四面体是侧棱与底面边长都相等的正三棱锥,它的对棱互相垂直.有一个如图所示的正四面体,E,F,G分别是棱AB,BC,CD的中点.(1)求证:面EFG;(2)求异面直线EG与AC所成角的大小.18.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.19.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中υ参考公式:对于一组数据u1,υ1,20.已知向量,,.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的x的集合.21.的内角所对的边分别为,向量,若.(1)求角的大小;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,利用球面的表面积公式及圆的表面积公式即可求得.【详解】由已知可得:以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,其中半球的半径为1,故半球的表面积为:故答案为:C【点睛】本题主要考查了旋转体的概念,以及球的表面积的计算,其中解答中熟记旋转体的定义,以及球的表面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选3、A【解析】

∵∴−=3(−);∴=−.故选A.4、B【解析】试题分析:方法一:由条件可知三年级的同学的人数为,所以应抽人数为,方法二:由条件可知样本中一、二、三、四年级的人数比为4∶3∶2∶1,因此应抽取三年级的学生人数为,答案选B.考点:分层抽样5、B【解析】试题分析:由已知得,,故,选B.考点:集合的运算.6、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.7、C【解析】

作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.8、B【解析】

根据题意结合正弦定理,由题,可得三角形为等边三角形,即可得解.【详解】由题:即,中,由正弦定理可得:,即,两边同时平方:,由题,所以,即,所以,即为等边三角形,所以.故选:B【点睛】此题考查利用正弦定理进行边角互化,根据边的关系判断三角形的形状,求出三角形的内角.9、B【解析】

根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.10、B【解析】

可先确定奇偶性,再确定单调性.【详解】由题意A、B、C三个函数都是偶函数,D不是偶函数也不是奇函数,排除D,A中在上不单调,C中在是递增,只有B中函数在上递减.故选B.【点睛】本题考查函数的奇偶性与单调性,解题时可分别确定函数的这两个性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用反三角函数运算法则写出结果即可.【详解】解:.故答案为:.【点睛】本题考查反三角函数的运算法则的应用,属于基础题.12、【解析】

先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.13、【解析】

先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.14、1【解析】

根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.15、【解析】

根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.16、9【解析】

平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】

(1)连接EF,FG,GE,通过三角形的中位线可得,进而可得面EFG;(2)由题可得为异面直线EG与AC所成角,根据正四棱锥的特点得到为等腰直角三角形,进而可得结果.【详解】解:(1)连接EF,FG,GE,如图,E,F分别是棱AB,BC的中点,,又面EFG,面EFG,面EFG;(2)由(1),则为异面直线EG与AC所成角,AC与BD是正四面体的对棱,,又,,又,为等腰直角三角形,,即异面直线EG与AC所成角的大小为.【点睛】本题考查线面平行的证明,以及异面直线所成的角,通过直线平行找到异面直线所成角的平面角是关键,本题难度不大.18、(1)(2)最大值为2,最小值为【解析】

(1)先将函数化简为,根据公式求最小正周期.

(2)由,则,可求出函数的最值.【详解】(1)所以的最小正周期为:.(2)由(1)有,则则当,即时,有最小值.当即,时,有最大值2.所以在区间上的最大值为2,最小值为.【点睛】本题考查三角函数化简、求最小正周期和函数在闭区间上的最值,属于中档题.19、(1)y=c⋅dx【解析】

(1)根据散点图判断,y=c⋅dx适宜;(2)y=c⋅dx,两边同时取常用对数得:【详解】(1)根据散点图判断,y=c⋅dx适宜作为扫码支付的人数y关于活动推出天数(2)∵y=c⋅dx,两边同时取常用对数得:1gy=1g(c⋅d设1gy=v,∴v=1gc+1gd⋅x∵x=4,v∴lgd=把样本中心点(4,1.54)代入v=1gc+1gd⋅x,得:∴v=0.54+0.25x,∴y关于x的回归方程式:y=把x=8代入上式,y=3.47×活动推出第8天使用扫码支付的人次为3470;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.20、(1)值域为.(2)【解析】

(1)由向量,,利用数量积运算得到;由,得到,利用整体思想转化为正弦函数求值域.(2)不等式,转化为,利用整体思想,转化为三角不等式,利用单位圆或正弦函数的图象求解.【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论