版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃张掖市高一下数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值为()A. B. C. D.2.将两个长、宽、高分别为5,4,3的长方体垒在一起,使其中两个面完全重合,组成一个大长方体,则大长方体的外接球表面积的最大值为()A. B. C. D.3.已知三棱锥O-ABC,侧棱OA,OB,OC两两垂直,且OA=OB=OC=2,则以O为球心且1为半径的球与三棱锥O-ABC重叠部分的体积是()A.π8 B.π6 C.π4.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.5.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.6.己知向量,.若,则m的值为()A. B.4 C.- D.-47.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则A. B.C. D.8.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.1239.定义运算,设,若,,,则的值域为()A. B. C. D.10.若,则下列不等式成立的是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.12.在数列中,若,(),则________13.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.14.在中,,,,则的面积等于______.15.已知为的三个内角A,B,C的对边,向量,.若,且,则B=16.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式的解集为或.(1)求实数a,b的值;(2)解不等式.18.已知数列为等比数列,,公比,且成等差数列.(1)求数列的通项公式;(2)设,,求使的的取值范围.19.设的内角为所对的边分别为,且.(1)求角的大小;(2)若,求的周长的取值范围.20.如图,在四棱锥中,,底面是矩形,侧面底面,是的中点.(1)求证:平面;(2)求证:平面.21.在中,分别是内角所对的边,已知.(1)求角;(2)若,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由诱导公式可得,故选B.2、B【解析】
要计算长方体的外接球表面积就是要求出外接球的半径,根据长方体的对角线是外接球的直径这一性质,就可以求出外接球的表面积,分类讨论:(1)长宽的两个面重合;(2)长高的两个面重合;(3)高宽两个面重合,分别计算出新长方体的对角线,然后分别计算出外接球的表面积,最后通过比较即可求出最大值.【详解】(1)当长宽的两个面重合,新的长方体的长为5,宽为4,高为6,对角线长为:,所以大长方体的外接球表面积为;(2)当长高两个面重合,新的长方体的长5,宽为8,高为3,对角线长为:,所以大长方体的外接球表面积为;(3)当宽高两个面重合,新的长方体的长为10,宽为4,高为3,对角线长为:,所以大长方体的外接球表面积为,显然大长方体的外接球表面积的最大值为,故本题选B.【点睛】本题考查了长方体外接球的半径的求法,考查了分类讨论思想,考查了球的表面积计算公式,考查了数学运算能力.3、B【解析】
根据三棱锥三条侧棱的关系,得到球与三棱锥的重叠部分为球的18【详解】∵三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,以O为球心且1为半径的球与三棱锥O-ABC重叠部分的为球的18即对应的体积为18【点睛】本题主要考查球体体积公式的应用,解题的关键就是利用三棱锥与球的关系,考查空间想象能力,属于中等题。4、B【解析】
先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【点睛】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.5、C【解析】
将1,2代入直线方程得到1a+2【详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【点睛】本题考查了直线方程,均值不等式,1的代换是解题的关键.6、B【解析】
根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,解得.故选B.【点睛】本小题主要考查两个向量垂直的坐标表示,考查向量减法的坐标运算,属于基础题.7、D【解析】
由平面向量基本定理和向量运算求解即可【详解】根据题意得:,又,,所以.故选D.【点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础题.8、B【解析】试题分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.9、C【解析】
由题意,由于与都是周期函数,且最小正周期都是,故只须在一个周期上考虑函数的值域即可,分别画出与的图象,如图所示,观察图象可得:的值域为,故选C.10、C【解析】
利用的单调性直接判断即可。【详解】因为在上递增,又,所以成立。故选:C【点睛】本题主要考查了幂函数的单调性,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题12、【解析】
由题意,得到数列表示首项为1,公差为2的等差数列,结合等差数列的通项公式,即可求解.【详解】由题意,数列中,满足,(),即(),所以数列表示首项为1,公差为2的等差数列,所以.故答案为:【点睛】本题主要考查了等差数列的定义和通项公式的应用,其中解答中熟记等差数列的定义,合理利用数列的通项公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.13、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.14、【解析】
先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.15、【解析】
根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【详解】根据题意,由正弦定理可得则所以答案为。【点睛】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。16、72【解析】
先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【点睛】本题考查排列、组合计数原理的应用,考查基本运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案不唯一,见解析【解析】
(1)题意说明是方程的解,代入可得,把代入可求得原不等式的解集,从而得值;(2)因式分解后讨论和6的大小可得不等式的解集.【详解】(1)依题意,得:,解得,所以,不等式为,解得,或,所以,所以,;(2)不等式为:,即,当时,解集为当时,解集为当时,解集为【点睛】本题考查解一元二次不等式,考查一元二次不等式的解集与一元二次方程根的关系,在解含参数的一元二次不等式时要注意分类讨论.18、(1);(2)【解析】
(1)利用等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得数列的通项公式.(2)先求得的表达式,利用裂项求和法求得,解不等式求得的取值范围.【详解】解:(1)∵成等差数列,得,∵等比数列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【点睛】本小题主要考查等差中项的性质,考查等比数列基本量的计算,考查裂项求和法,考查不等式的解法,属于中档题.19、(1);(2).【解析】试题分析:(1)已知,由余弦定理角化边得,再由余弦定理可得角的值;(2)根据与,由正弦定理求得,,结合代入到的周长表达式,利用三角恒等变换化简得到的周长关于角的三角函数,再根据正弦函数的图象与性质,即可求解周长的取值范围.试题解析:(1),由余弦定理,得,,∵.(2).由正弦定理,得,同理可得,的周长,,的周长,故的周长的取值范围为.点睛:在解三角形的范围问题时往往要运用正弦定理或余弦定理转化为角度的范围问题,这样可以利用辅助角公式进行化简,再根据角的范围求得最后的结果.20、(1)证明见解析;(2)证明见解析.【解析】
(1)利用即可证明;(2)由面面垂直的性质即可证明.【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版泥浆外运承包合同(含应急处理预案)4篇
- 二零二五版拌合料生产技术标准制定与执行合同4篇
- 二零二五年度智能建筑暖通设备采购合同4篇
- 二零二五版门闸安全标准认证服务合同4篇
- 二零二五年度网络安全年薪制劳动合同4篇
- 二零二五年度冲击锤施工材料质量检测合同2篇
- 二零二五年度租赁市场合同纠纷解决策略4篇
- 二零二五年度城市更新改造项目规划合同4篇
- 二零二五年度农业电商数据安全与隐私保护合同样本3篇
- 2025年度二零二五年度猕猴桃出口贸易代理合同3篇
- 2024年供应链安全培训:深入剖析与应用
- 飞鼠养殖技术指导
- 坏死性筋膜炎
- 整式的加减单元测试题6套
- 股权架构完整
- 山东省泰安市2022年初中学业水平考试生物试题
- 注塑部质量控制标准全套
- 人教A版高中数学选择性必修第一册第二章直线和圆的方程-经典例题及配套练习题含答案解析
- 银行网点服务礼仪标准培训课件
- 二年级下册数学教案 -《数一数(二)》 北师大版
- 晶体三极管资料
评论
0/150
提交评论