广东肇庆市2023-2024学年数学高一下期末复习检测模拟试题含解析_第1页
广东肇庆市2023-2024学年数学高一下期末复习检测模拟试题含解析_第2页
广东肇庆市2023-2024学年数学高一下期末复习检测模拟试题含解析_第3页
广东肇庆市2023-2024学年数学高一下期末复习检测模拟试题含解析_第4页
广东肇庆市2023-2024学年数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东肇庆市2023-2024学年数学高一下期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.32.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.03.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个4.点关于直线的对称点的坐标为()A. B. C. D.5.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.6.在中,已知,且满足,则的面积为()A.1 B.2 C. D.7.已知,若关于的不等式的解集中的整数恰有3个,则实数的取值范围是()A. B. C. D.8.在△ABC中,内角A,B,C的对边分别是a,b,c,若cosB=,=2,且S△ABC=,则b的值为()A.4 B.3 C.2 D.19.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>010.在三棱锥中,,,则三棱锥外接球的体积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是______.12.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.13.函数的最大值为.14.若的两边长分别为和,其夹角的余弦为,则其外接圆的面积为______________;15.已知向量,则的单位向量的坐标为_______.16.计算:________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的不等式的解集为.(1)求的值;(2)求函数的最小值.18.已知是夹角为的单位向量,且,.(1)求;(2)求与的夹角.19.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.20.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.21.已知向量=,=,=,为坐标原点.(1)若△为直角三角形,且∠为直角,求实数的值;(2)若点、、能构成三角形,求实数应满足的条件.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【点睛】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.2、C【解析】

画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.3、B【解析】

对各选项逐个论证或给出反例后可得正确的命题的个数.【详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【点睛】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.4、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.5、B【解析】

分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.6、D【解析】

根据正弦定理先进行化简,然后根据余弦定理求出C的大小,结合三角形的面积公式进行计算即可.【详解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面积.故选D.【点睛】本题主要考查三角形面积的计算,结合正弦定理余弦定理进行化简是解决本题的关键,属于基础题.7、A【解析】

将不等式化为,可知满足不等式,不满足不等式,由此可确定个整数解为;当和时,解不等式可知不满足题意;当时,解出不等式的解集,要保证整数解为,则需,解不等式组求得结果.【详解】由得:当时,成立必为不等式的一个整数解当时,不成立不是不等式的整数解个整数解分别为:当时,,不满足题意当时,解不等式得:或不等式不可能只有个整数解,不满足题意当时,,解得:,即的取值范围为:本题正确选项:【点睛】本题考查根据不等式整数解的个数求解参数范围问题,关键是能够利用特殊值确定整数解的具体取值,从而解不等式,根据整数解的取值来确定解集的上下限,构造不等式组求得结果.8、C【解析】试题分析:根据正弦定理可得,.在中,,.,,.,.故C正确.考点:1正弦定理;2余弦定理.9、A【解析】

结合选项逐个分析,可选出答案.【详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.10、B【解析】

三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心,外接球的半径为,可求出,然后由可求出半径,进而求出外接球的体积.【详解】由题意,易知三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心.因为,所以.因为,所以.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选B.【点睛】本题考查了三棱锥的外接球体积的求法,考查了学生的空间想象能力与计算求解能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题可得,分式化乘积得,进而求得解集.【详解】由移项通分可得,即,解得,故解集为【点睛】本题考查分式不等式的解法,属于基础题.12、【解析】

根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.13、【解析】略14、【解析】

首先根据余弦定理求第三边,再求其对边的正弦值,最后根据正弦定理求半径和面积.【详解】设第三边为,,解得:,设已知两边的夹角为,,那么,根据正弦定理可知,,外接圆的面积.故填:.【点睛】本题简单考查了正余弦定理,考查计算能力,属于基础题型.15、.【解析】

由结论“与方向相同的单位向量为”可求出的坐标.【详解】,所以,,故答案为.【点睛】本题考查单位向量坐标的计算,考查共线向量的坐标运算,充分利用共线单位向量的结论可简化计算,考查运算求解能力,属于基础题.16、3【解析】

直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】

(1)利用根与系数的关系,得到等式和不等式,最后求出的值;(2)化简函数的解析式,利用基本不等式可以求出函数的最小值.【详解】解:(1)由题意知:,解得.(2)由(1)知,∴,而时,当且仅当,即时取等号而,∴的最小值为1.【点睛】本题考查了已知一元二次不等式的解集求参数问题,考查了基本不等式的应用,考查了数学运算能力.18、(1)(2)【解析】试题分析:(1)根据题知,由向量的数量积公式进行运算即可,注意,在去括号的向量运算过程中可采用多项式的运算方法;(2)根据向量数量积公式,可先求出的值,又,从而可求出的值.试题解析:(1)==(2)19、(1)证明见解析;(2).【解析】试题分析:(1)对两边取倒数得,化简得,所以数列是等比数列;(2)由(1)是等比数列.,求得,利用错位相减法和分组求和法求得前项和.试题解析:(1),又,数列是以为首项,为公比的等比数列.(2)由(1)知,,即,设,①则,②由①-②得,.又.数列的前项和.考点:配凑法求通项,错位相减法.20、(1);(2).【解析】试题分析:本题主要考查正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式等基础知识,同时考查考生的分析问题解决问题的能力和运算求解能力.第一问,利用正弦定理将边换成角,消去,解出角C,再利用解出边b的长;第二问,利用三角形面积公式,可直接解出a边的值,再利用余弦定理解出边c的长.试题解析:(Ⅰ)由正弦定理得,又,所以,.因为,所以.…6分(Ⅱ)因为,,所以.据余弦定理可得,所以.…12分考点:正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论