版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届兴安市重点中学数学高一下期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.2.无论取何实数,直线恒过一定点,则该定点坐标为()A. B. C. D.3.函数的图像的一条对称轴是()A. B. C. D.4.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.175.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.6.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg7.等比数列的各项均为正数,且,则()A. B. C. D.8.已知,且,则()A. B. C. D.9.将函数的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的(纵坐标不变),得到函数的图象.若函数在区间上有且仅有两个零点,则的取值范围为()A. B. C. D.10.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.二、填空题:本大题共6小题,每小题5分,共30分。11.己知函数,,则的值为______.12.如图是一个三角形数表,记,,…,分别表示第行从左向右数的第1个数,第2个数,…,第个数,则当,时,______.13.数列满足,,,则数列的通项公式______.14.已知实数满足则的最小值为__________.15.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限.16.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在正方体中.(1)求证:;(2)是中点时,求直线与面所成角.18.已知点,,均在圆上.(1)求圆的方程;(2)若直线与圆相交于,两点,求的长;(3)设过点的直线与圆相交于、两点,试问:是否存在直线,使得恰好平分的外接圆?若存在,求出直线的方程;若不存在,请说明理由.19.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)已知数列的前项和,,求数列,的前项和.20.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.21.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.2、A【解析】
通过整理直线的形式,可求得所过的定点.【详解】直线可整理为,当,解得,无论为何值,直线总过定点.故选A.【点睛】本题考查了直线过定点问题,属于基础题型.3、C【解析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.4、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.5、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.6、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.7、D【解析】
本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.8、D【解析】
首先根据,求得,结合角的范围,利用平方关系,求得,利用题的条件,求得,之后将角进行配凑,使得,利用正弦的和角公式求得结果.【详解】因为,所以,因为,所以.因为,,所以,所以,故选D.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.9、C【解析】
写出变换后的函数解析式,,,结合正弦函数图象可分析得:要使函数有且仅有两个零点,只需,即可得解.【详解】由题,根据变换关系可得:,函数在区间上有且仅有两个零点,,,根据正弦函数图象可得:,解得:.故选:C【点睛】此题考查函数图象的平移和伸缩变换,根据函数零点个数求参数的取值范围.10、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.12、【解析】
由图表,利用归纳法,得出,再利用叠加法,即可求解数列的通项公式.【详解】由图表,可得,,,,,可归纳为,利用叠加法可得:,故答案为.【点睛】本题主要考查了归纳推理的应用,以及数列的叠加法的应用,其中解答中根据图表,利用归纳法,求得数列的递推关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.13、【解析】
由题意得出,利用累加法可求出.【详解】数列满足,,,,因此,.故答案为:.【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.14、【解析】
本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【点睛】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。15、二【解析】
由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限.【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二.点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号.16、5【解析】设一部门抽取的员工人数为x,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)连接,证明平面,进而可得出;(2)连接、、,设,过点在平面内作,垂足为点,连接,设,则角和均为直线与平面所成的角,从而可得出,即可求出所求角.【详解】(1)如下图所示,连接,在正方体中,平面,平面,,四边形为正方形,,,平面,平面,;(2)连接、、,设,过点在平面内作,垂足为点,设,设正方体的棱长为,在正方体中,且,所以,四边形为平行四边形,,平面,平面,在平面内,,,,,则、、、四点共面,为的中点,,且,平面,平面,,由勾股定理得,连接,设,则直线与面所成角为,则,,由连比定理得,则,因此,直线与面所成角为.【点睛】本题考查线线垂直的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18、(1);(2);(3)存在,和.【解析】
(1)根据圆心在,的中垂线上,设圆心的坐标为,根据求出的值,从而可得结果;(2)利用点到直线的距离公式以及勾股定理可得结果;(3)首先验证直线的斜率不存在时符合题意,然后斜率存在时,设出直线方程,与圆的方程联立,利用韦达定理,根据列方程求解即可.【详解】解:(1)由题意可得:圆心在直线上,设圆心的坐标为,则,解得,即圆心,所以半径,所以圆的方程为;(2)圆心到直线的距离为:,;(3)设,由题意可得:,且的斜率均存在,即,当直线的斜率不存在时,,则,满足,故直线满足题意,当直线的斜率存在时,设直线的方程为,由,消去得,则,由得,即,即,解得:,所以直线的方程为,综上所述,存在满足条件的直线和.【点睛】本题考查直线和圆的位置关系,注意对于直线要研究其斜率是否存在,另外利用韦达定理可以达到设而不求的目的,本题是中档题.19、(1),(2)【解析】
(1)根据题意得到,解方程组即可.(2)首先根据,得到,再利用错位相减法即可求出.【详解】(1)有题知,解得.所以.(2)当时,,当时,.检查:当时,.所以,.①,②,①②得:,.【点睛】本题第一问考查等差数列的性质,第二问考查利用错位相减法求数列的前项和,同时考查了学生的计算能力,属于中档题.20、(1)(2)【解析】
(1)利用二倍角公式以及辅助角公式化简即可.(2)利用配凑把打开即可.【详解】解:(1)原式(2),,又,,,,【点睛】本题主要考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度网络安全合同标的详细描述2篇
- 2025年度新型城镇化项目销售代理执行合同2篇
- 二零二五年度PVC彩印包装材料批量采购合同2篇
- 二零二五年个人出租车承包合同范本及司机权益保护措施3篇
- 婚礼男方父亲发言稿11篇
- 2025年度消防设施智能化改造合同2篇
- 二零二五年度卫星通信海洋监测数据服务合同3篇
- 女方母亲婚礼的致辞范文(8篇)
- 2024年版权质押合同标的:电子书著作权
- 学校安全工作会议主持人讲话稿(6篇)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之7:“5领导作用-5.1领导作用和承诺”(雷泽佳编制-2025B0)
- 2024年度通信设备维修服务合同范本3篇
- 安恒可信数据空间建设方案 2024
- 一次显著的性能优化
- 《中国近现代史纲要(2023版)》课后习题答案合集汇编
- 领域驱动设计1
- 脑卒中的肠内营养支持
- 电业安全工作规程——电气部分电业安全工作规程
- 基于稳态模型的转差频率控制的交流调速系统的仿真与设计
- 集装箱内装仓库仓储最新协议
- 毕业设计论文千斤顶液压缸加工专用机床电气控制系统设计
评论
0/150
提交评论