2023-2024学年雅安市重点中学高一数学第二学期期末经典试题含解析_第1页
2023-2024学年雅安市重点中学高一数学第二学期期末经典试题含解析_第2页
2023-2024学年雅安市重点中学高一数学第二学期期末经典试题含解析_第3页
2023-2024学年雅安市重点中学高一数学第二学期期末经典试题含解析_第4页
2023-2024学年雅安市重点中学高一数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年雅安市重点中学高一数学第二学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若且,则下列不等式成立的是()A. B. C. D.2.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.3.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若,,则线段的长为()A.3 B.3.5 C.4 D.4.54.已知向量,,则在方向上的投影为()A. B. C. D.5.在中,,,,点P是内(包括边界)的一动点,且(),则的最大值为()A.6 B. C. D.66.函数的图象如图所示,则y的表达式为()A. B.C. D.7.如下图是一个正方体的平面展开图,在这个正方体中①②与成角③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④8.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”9.根据如下样本数据x

3

4

5

6

7

8

y

可得到的回归方程为,则()A. B. C. D.10.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.若实数满足,则取值范围是____________。12.将二进制数110转化为十进制数的结果是_____________.13.某球的体积与表面积的数值相等,则球的半径是14.函数,的反函数为__________.15.函数的反函数为__________.16.若点,是圆C:上不同的两点,且,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前n项和为,关于x的不等式的解集为.(1)求数列的通项公式;(2)若数列满足,求数列的前n项和.18.如图,在三棱柱中,侧棱垂直于底面,,分别是的中点.(1)求证:平面;(2)求三棱锥的体积.19.某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.20.设是一个公比为q的等比数列,且,,成等差数列.(1)求q;(2)若数列前4项的和,令(),求数列的前n项和.21.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用不等式的性质对四个选项逐一判断.【详解】选项A:,符合,但不等式不成立,故本选项是错误的;选项B:当符合已知条件,但零没有倒数,故不成立,故本选项是错误的;选项C:当时,不成立,故本选项是错误的;选项D:因为,所以根据不等式的性质,由能推出,故本选项是正确的,因此本题选D.【点睛】本题考查了不等式的性质,结合不等式的性质,举特例是解决这类问题的常见方法.2、D【解析】

先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【点睛】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.3、A【解析】

设,可得,求得,在中,运用余弦定理,解方程可得所求值.【详解】设,可得,且,在中,可得,即为,化为,解得舍去),故选.【点睛】本题考查三角形的余弦定理,考查方程思想和运算能力,属于基础题.4、D【解析】

直接利用向量的数量积和向量的投影的定义,即可求解,得到答案.【详解】由题意,向量,,则在方向上的投影为:.故选D.【点睛】本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】

利用余弦定理和勾股定理可证得;取,作,根据平面向量平行四边形法则可知点轨迹为线段,由此可确定,利用勾股定理可求得结果.【详解】由余弦定理得:如图,取,作,交于在内(包含边界)点轨迹为线段当与重合时,最大,即故选:【点睛】本题考查向量模长最值的求解问题,涉及到余弦定理解三角形的应用;解题关键是能够根据平面向量线性运算确定动点轨迹,根据轨迹确定最值点.6、B【解析】

根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.7、D【解析】由已知中正方体的平面展开图,得到正方体的直观图如上图所示:

由正方体的几何特征可得:①不平行,不正确;

②AN∥BM,所以,CN与BM所成的角就是∠ANC=60°角,正确;③与不平行、不相交,故异面直线与为异面直线,正确;

④易证,故,正确;故选D.8、C【解析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.9、A【解析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;10、D【解析】

利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【点睛】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

利用三角换元,设,;利用辅助角公式将化为,根据三角函数值域求得结果.【详解】可设,,本题正确结果:【点睛】本题考查利用三角换元法求解取值范围的问题,关键是能够将问题转化为三角函数值域的求解问题.12、6【解析】

将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【详解】,故答案为:6.【点睛】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.13、3【解析】试题分析:,解得.考点:球的体积和表面积14、【解析】

将函数变形为的形式,然后得到反函数,注意定义域.【详解】因为,所以,则反函数为:且.【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.15、【解析】

由得,即,把与互换即可得出【详解】由得所以把与互换,可得故答案为:【点睛】本题考查的是反函数的求法,较简单.16、【解析】

由,再结合坐标运算即可得解.【详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【点睛】本题考查了向量模的运算,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据不等式的解集,得到和,从而得到等差数列的公差,得到的通项公式;(2)由(1)得到的的通项,得到的通项,利用等比数列的求和公式,得到答案.【详解】(1)因为关于x的不等式的解集为,所以得到,,所以,,为等差数列,设其公差为,所以,所以,所以(2)因为,所以所以是以为首项,为公比的等比数列,所以.【点睛】本题考查一元二次不等式解集与系数的关系,求等差数列的通项,等比数列求和,属于简单题.18、(1)证明见解析(2)【解析】试题分析:(1)做辅助线,先证及四边形为平行四边形平面;(2)利用勾股定理求得.试题解析:(1)证明:取中点,连接,则∵是的中点,∴;∵是的中点,∴,∴四边形为平行四边形,∴,∵平面,平面,∴平面;(2)∵,∴,∴19、(1)(2)平均数、中位数、众数依次为80,81,80【解析】

(1)利用频率分布直方图的性质,列出方程,即可求解;(2)由频率分布直方图,结合平均数、中位数、众数的计算方法,即可求解.【详解】(1)由频率分布直方图的性质,可得,解得.(2)由频率分布直方图,结合平均数、中位数、众数的计算方法,可得平均数为:中位数为x,则,解得.根据众数的概念,可得此频率分布直方图的众数为:80,因此估计这次初赛成绩的平均数、中位数、众数依次为80,81,80.【点睛】本题主要考查了频率分布直方图的性质,平均数、中位数和众数的求解,其中解答中熟记频率分布直方图的相关知识是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1),(2)或【解析】

(1)根据,,成等差数列,得到,解得答案.(2)讨论和两种情况,利用错位相减法计算得到答案.【详解】(1)因为是一个公比为q的等比数列,所以.因为,,成等差数列,所以即.解得,.(2)①若,又它的前4和,得,解得所以,因为,(),∴,,∴,∴②若,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论