版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京专家高一下数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三棱锥的所有顶点都在球的球面上,,则球的表面积为()A. B. C. D.2.化简的结果是()A. B.C. D.3.直线的倾斜角为A. B. C. D.4.集合,,则()A. B.C. D.5.已知是常数,如果函数的图像关于点中心对称,那么的最小值为()A. B. C. D.6.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定7.将函数的图象向右平移个单位长度,所得图象对应的函数A.在区间上单调递增 B.在区间上单调递减C.在区间上单调递增 D.在区间上单调递减8.根据下面茎叶图提供了甲、乙两组数据,可以求出甲、乙的中位数分别为()A.24和29 B.26和29 C.26和32 D.31和299.某种产品的广告费用支出与销售额之间具有线性相关关系,根据下表数据(单位:百万元),由最小二乘法求得回归直线方程为.现发现表中有个数据看不清,请你推断该数据值为()345582834★5672A.65 B.60 C.55 D.5010.已知变量与负相关,且由观测数据算得样本平均数,则由该观测数据算得的线性回归方程可能是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的内角的对边分别为,若,,,则的面积为__________.12.等差数列中,则此数列的前项和_________.13.若数列满足,则_____.14.设,其中,则的值为________.15.已知等差数列的公差为2,若成等比数列,则________.16.已知,均为单位向量,它们的夹角为,那么__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.18.近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)19.如图,在直三棱柱中,,,是棱的中点.(1)求证:;(2)求证:.20.已知,,与的夹角是(1)计算:①,②;(2)当为何值时,与垂直?21.已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)求过点且与圆相切的直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.2、D【解析】
确定角的象限,结合三角恒等式,然后确定的符号,即可得到正确选项.【详解】因为为第二象限角,所以,故选D.【点睛】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.3、D【解析】
求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.4、B【解析】
求出中不等式的解集确定出,找出与的交集即可.【详解】解:由中不等式变形得:,解得:,即,,,故选:.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.5、C【解析】
将点的坐标代入函数的解析式,得出,求出的表达式,可得出的最小值.【详解】由于函数的图象关于点中心对称,则,,则,因此,当时,取得最小值,故选C.【点睛】本题考查余弦函数的对称性,考查初相绝对值的最小值,解题时要结合题中条件求出初相的表达式,结合表达式进行计算,考查分析问题和解决问题的能力,属于中等题.6、B【解析】
利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.7、A【解析】
由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.【详解】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:,本题选择A选项.【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.8、B【解析】
根据茎叶图,将两组数据按大小顺序排列,因为是12个数,所以中位数即为中间两数的平均数.【详解】从茎叶图知都有12个数,所以中位数为中间两个数的平均数甲中间两个数为25,27,所以中位数是26乙中间两个数为28,30,所以中位数是29故选:B【点睛】本题主要考查了茎叶图和中位数,平均数,还考查了数据处理的能力,属于基础题.9、B【解析】
求出样本中心点的坐标,代入线性回归方程求解.【详解】设表中看不清的数据为,则,,代入,得,解得.故选:.【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.10、D【解析】
由于变量与负相关,得回归直线的斜率为负数,再由回归直线经过样本点的中心,得到可能的回归直线方程.【详解】由于变量与负相关,排除A,B,把代入直线得:成立,所以在直线上,故选D.【点睛】本题考查回归直线斜率的正负、回归直线过样本点中心,考查基本数据处理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由已知及正弦定理可得:,进而利用余弦定理即可求得a的值,进而可求c,利用三角形的面积公式即可求解.【详解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案为:.【点睛】本题注意考查余弦定理与正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.12、180【解析】由,,可知.13、【解析】
由递推公式逐步求出.【详解】.故答案为:【点睛】本题考查数列的递推公式,属于基础题.14、【解析】
由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.15、【解析】
利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..16、.【解析】分析:由,均为单位向量,它们的夹角为,求出数量积,先将平方,再开平方即可的结果.详解:∵,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】
(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面面平行的性质定理证明平面;(3)首先设为,利用平面列出关于参数的方程求解即可.【详解】(1)∵三棱柱的侧棱垂直于底面,且,,,∴由三棱柱体积公式得:;(2)证明:取的中点,连接,,∵,分别为和的中点,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)连接,设,则由题意知,,∵三棱柱的侧棱垂直于底面,∴平面平面,∵,∴,又点是的中点,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,则时,平面.【点睛】本题考查了三棱柱的体积公式,线面平行的证明,利用线面垂直求参数,属于难题.18、(1)(2)应安排名民工参与抢修,才能使总损失最小【解析】
(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积,即可得,所以;(2)损失包=渗水直接经济损失+抢修服装补贴费+劳务费耗材费,即可得到函数解析式,再利用基本不等式,即可得到结果.【详解】由题意,可得,所以.设总损失为元,则当且仅当,即时,等号成立,所以应安排名民工参与抢修,才能使总损失最小.【点睛】本题主要考查了函数的实际应用问题,以及基本不等式求最值的应用,其中解答中认真审题是关键,以及合理运用函数与不等式方程思想的有机结合,及基本不等式的应用是解答的关键,属于中档题,着重考查了分析问题和解答问题的能力.19、(1)见详解;(2)见详解.【解析】
(1)连接AC1,设AC1∩A1C=O,连接OD,可求O为AC1的中点,D是棱AB的中点,利用中位线的性质可证OD∥BC1,根据线面平行的判断定理即可证明BC1∥平面A1CD.(2)由(1)可证平行四边形ACC1A1是菱形,由其性质可得AC1⊥A1C,利用线面垂直的性质可证AB⊥AA1,根据AB⊥AC,利用线面垂直的判定定理可证AB⊥平面ACC1A1,利用线面垂直的性质可证AB⊥A1C,又AC1⊥A1C,根据线面垂直的判定定理可证A1C⊥平面ABC1,利用线面垂直的性质即可证明BC1⊥A1C.【详解】(1)连接AC1,设AC1∩A1C=O,连接OD,在直三棱柱ABC﹣A1B1C1中,侧面ACC1A1是平行四边形,所以:O为AC1的中点,又因为:D是棱AB的中点,所以:OD∥BC1,又因为:BC1⊄平面A1CD,OD⊂平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:侧面ACC1A1是平行四边形,因为:AC=AA1,所以:平行四边形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因为:AB⊂平面ABC,所以:AB⊥AA1,又因为:AB⊥AC,AC∩AA1=A,AC⊂平面ACC1A1,AA1⊂平面ACC1A1,所以:AB⊥平面ACC1A1,因为:A1C⊂平面ACC1A1,所以:AB⊥A1C,又因为:AC1⊥A1C,AB∩AC1=A,AB⊂平面ABC1,AC1⊂平面ABC1,所以:A1C⊥平面ABC1,因为:BC1⊂平面ABC1,所以:BC1⊥A1C.【点睛】本题主要考查了线面平行的判定,线面垂直的性质,线面垂直的判定,考查了空间想象能力和推理论证能力,属于中档题.20、(1)①;②;(2).【解析】
利用数量积的定义求解出的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果.【详解】由已知得:(1)①②(2)若与垂直,则即:,解得:【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年泵送设备购买与维修合同3篇
- 高考生营养餐制作指南
- 智能生活乐趣多课程设计
- 大数据驱动的创新策略
- 幼儿园兔子剪纸课程设计
- 文化传播机构讲解员培训课程
- 2024年教务处主任年度考核个人工作总结
- 塑料制品设计课程设计
- 幼儿园居家野菜课程设计
- 主题酒店的品牌建设与维护
- 医学教程 《疼痛与护理》课件
- 2023-2024学年天津市部分区八年级(上)期末物理试卷
- 律师事务所薪酬分配制度
- 2024山东高速路桥集团股份限公司社会招聘455人高频难、易错点500题模拟试题附带答案详解
- 第10课《往事依依》公开课一等奖创新教学设计
- 2024-2030年中国呼叫中心外包行业市场发展趋势与前景展望战略研究报告
- Unit 4 My Favourite Subject Section B(教学教学设计) 2024-2025学年人教版(2024)七年级英语上册
- 汽车之家:2024年增换购用户需求洞察1727674734
- 陕西省师大附中2025届高三下学期联考物理试题含解析
- 读后续写15种高分句式
- 2024电力巡检无人机自动机场技术标准
评论
0/150
提交评论